Files
libopencm3/lib/stm32/u5/rcc.c
Mateusz Myalski edbb8ed7e3 Added I2C stm32u5_support
Tested I2C master mode on 16MHz HSI
2025-07-11 20:31:43 -07:00

458 lines
11 KiB
C

/** @defgroup rcc_file RCC peripheral API
*
* @ingroup peripheral_apis
*
* @brief <b>libopencm3 STM32U5xx Reset and Clock Control</b>
*
* @version 1.0.0
*
* @date 09 Oct 2024
*
* This library supports the Reset and Clock Control System in the STM32U5xx
* series of ARM Cortex Microcontrollers by ST Microelectronics.
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2009 Federico Ruiz-Ugalde <memeruiz at gmail dot com>
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2010 Thomas Otto <tommi@viadmin.org>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**@{*/
#include <libopencm3/cm3/assert.h>
#include <libopencm3/stm32/rcc.h>
/* Set the default clock frequencies */
#define RCC_DEFAULT_MSIS_FREQUENCY 4000000U
#define RCC_DEFAULT_HSI48_FREQUENCY 48000000U
#define RCC_DEFAULT_SHSI_FREQUENCY 48000000U
#define RCC_DEFAULT_HSI16_FREQUENCY 16000000U
#define RCC_DEFAULT_LSI_FREQUENCY 32000U
#define RCC_DEFAULT_LSE_FREQUENCY 32768U
uint32_t rcc_ahb_frequency = RCC_DEFAULT_MSIS_FREQUENCY;
uint32_t rcc_apb1_frequency = RCC_DEFAULT_MSIS_FREQUENCY;
uint32_t rcc_apb2_frequency = RCC_DEFAULT_MSIS_FREQUENCY;
const struct rcc_clock_scale rcc_hsi16mhz_configs = {
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre1 = RCC_CFGR_PPRE_NODIV,
.ppre2 = RCC_CFGR_PPRE_NODIV,
.ahb_frequency = RCC_DEFAULT_HSI16_FREQUENCY,
.apb1_frequency = RCC_DEFAULT_HSI16_FREQUENCY,
.apb2_frequency = RCC_DEFAULT_HSI16_FREQUENCY,
};
void rcc_set_ppre2(uint32_t ppre2)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~RCC_CFGR_PPRE2;
RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT));
}
void rcc_set_ppre1(uint32_t ppre1)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~RCC_CFGR_PPRE1;
RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT));
}
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~RCC_CFGR_HPRE;
RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT));
}
/**
* Switch sysclock to HSI with the given parameters.
* This should be usable from any point in time, but only if you have used
* library functions to manage clocks. It relies on the global
* @ref rcc_ahb_frequency to ensure that it reliably scales voltage up or down
* as appropriate.
* @param clock full struct with desired parameters
*/
void rcc_clock_setup_hsi(const struct rcc_clock_scale *clock)
{
/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
/* Don't try and go to fast for a voltage range! */
if (clock->ahb_frequency > rcc_ahb_frequency) {
/* Going up, power up first */
// pwr_set_vos_scale(clock->voltage_scale); TODO
rcc_set_hpre(clock->hpre);
rcc_set_ppre1(clock->ppre1);
rcc_set_ppre2(clock->ppre2);
} else {
/* going down, slow down before cutting power */
rcc_set_hpre(clock->hpre);
rcc_set_ppre1(clock->ppre1);
rcc_set_ppre2(clock->ppre2);
// pwr_set_vos_scale(clock->voltage_scale); TODO
}
rcc_wait_for_osc_ready(RCC_HSI);
rcc_set_sysclk_source(RCC_HSI16);
/* Set the peripheral clock frequencies used. */
rcc_ahb_frequency = clock->ahb_frequency;
rcc_apb1_frequency = clock->apb1_frequency;
rcc_apb2_frequency = clock->apb2_frequency;
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Get the System Clock Source.
* @returns Unsigned int32. System clock source:
* @li 00 indicates MSIS
* @li 01 indicates HSI16
* @li 02 indicates HSE
* @li 03 indicates PLL
*/
uint32_t rcc_system_clock_source(void)
{
return (RCC_CFGR & RCC_CFGR_SWS) >> RCC_CFGR_SWS_SHIFT;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
void rcc_css_enable(void)
{
RCC_CR |= RCC_CR_CSSON;
}
void rcc_css_disable(void)
{
RCC_CR &= ~RCC_CR_CSSON;
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Turn off an Oscillator.
Disable an oscillator and power off.
@note An oscillator cannot be turned off if it is selected as the system clock.
@note The LSE clock is in the backup domain and cannot be disabled until the
backup domain write protection has been removed (see
@ref pwr_disable_backup_domain_write_protect) or the backup domain has been
(see reset @ref rcc_backupdomain_reset).
@param[in] osc Oscillator ID
*/
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL3:
RCC_CR &= ~RCC_CR_PLL3ON;
break;
case RCC_PLL2:
RCC_CR &= ~RCC_CR_PLL2ON;
break;
case RCC_PLL1:
RCC_CR &= ~RCC_CR_PLL1ON;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_SHSI:
RCC_CR &= ~RCC_CR_SHSION;
break;
case RCC_HSI48:
RCC_CR &= ~RCC_CR_HSI48ON;
break;
case RCC_HSI:
RCC_CR &= ~RCC_CR_HSION;
break;
case RCC_MSI:
RCC_CR &= ~RCC_CR_MSIKON;
break;
// TODO: Should we add MSIKER?
case RCC_MSIS:
RCC_CR &= ~RCC_CR_MSISON;
break;
default:
cm3_assert_not_reached();
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Turn on an Oscillator.
*
* Enable an oscillator and power on. Each oscillator requires an amount of
* time to settle to a usable state. Refer to datasheets for time delay
* information. A status flag is available to indicate when the oscillator
* becomes ready (see @ref rcc_osc_ready_int_flag and @ref
* rcc_wait_for_osc_ready).
*
* @param osc Oscillator ID
*/
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL3:
RCC_CR |= RCC_CR_PLL3ON;
break;
case RCC_PLL2:
RCC_CR |= RCC_CR_PLL2ON;
break;
case RCC_PLL1:
RCC_CR |= RCC_CR_PLL1ON;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_SHSI:
RCC_CR |= RCC_CR_SHSION;
break;
case RCC_HSI48:
RCC_CR |= RCC_CR_HSI48ON;
break;
case RCC_HSI:
RCC_CR |= RCC_CR_HSION;
break;
case RCC_MSI:
RCC_CR |= RCC_CR_MSIKON;
break;
// TODO: Should we add MSIKER?
case RCC_MSIS:
RCC_CR |= RCC_CR_MSISON;
break;
default:
cm3_assert_not_reached();
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Returns if the oscillator is ready.
*
* @param osc Oscillator ID
*/
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL3:
return RCC_CR & RCC_CR_PLL3RDY;
case RCC_PLL2:
return RCC_CR & RCC_CR_PLL2RDY;
case RCC_PLL1:
return RCC_CR & RCC_CR_PLL1RDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_SHSI:
return RCC_CR & RCC_CR_SHSIRDY;
case RCC_HSI48:
return RCC_CR & RCC_CR_HSI48RDY;
case RCC_HSI:
return RCC_CR & RCC_CR_HSIRDY;
case RCC_MSI:
return RCC_CR & RCC_CR_MSIKRDY;
case RCC_MSIS:
return RCC_CR & RCC_CR_MSISRDY;
default:
break;
}
return false;
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the Source for the System Clock.
*
* @param clk Oscillator ID.
*/
void rcc_set_sysclk_source(enum rcc_osc clk)
{
uint32_t sw = 0x0;
switch (clk) {
case RCC_MSIS:
sw = RCC_CFGR_SW_SYSCLKSEL_MSIS;
break;
case RCC_HSI16:
sw = RCC_CFGR_SW_SYSCLKSEL_HSI16;
break;
case RCC_HSE:
sw = RCC_CFGR_SW_SYSCLKSEL_HSE;
break;
case RCC_PLL1:
sw = RCC_CFGR_SW_SYSCLKSEL_PLL;
break;
default:
cm3_assert_not_reached();
break;
}
sw <<= RCC_CFGR_SW_SYSCLKSEL_SHIFT;
RCC_CFGR = (RCC_CFGR & ~(RCC_CFGR_SW_SYSCLKSEL_MASK << RCC_CFGR_SW_SYSCLKSEL_SHIFT)) | sw;
}
/**
* @brief Set the peripheral clock source
* @param periph peripheral of choice, eg XXX_BASE
* @param sel periphral clock source
*/
void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel) {
volatile uint32_t *reg32;
uint32_t shift;
uint32_t mask;
switch (periph) {
case USART1_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_USART1SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART2_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_USART2SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART3_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_USART3SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART4_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_USART4SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART5_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_USART5SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART6_BASE:
reg32 = &RCC_CCIPR2;
shift = RCC_CCIPR2_USART6SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case I2C1_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_I2C1SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
case I2C2_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_I2C2SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
case I2C3_BASE:
reg32 = &RCC_CCIPR3;
shift = RCC_CCIPR3_I2C3SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
case I2C4_BASE:
reg32 = &RCC_CCIPR1;
shift = RCC_CCIPR1_I2C4SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
case I2C5_BASE:
reg32 = &RCC_CCIPR2;
shift = RCC_CCIPR2_I2C5SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
case I2C6_BASE:
reg32 = &RCC_CCIPR2;
shift = RCC_CCIPR2_I2C6SEL_SHIFT;
mask = RCC_CCIPR_I2CxSEL_MASK;
break;
default:
cm3_assert_not_reached();
break;
}
mask <<= shift;
sel <<= shift;
(*reg32) = ((*reg32) & ~mask) | sel;
}
static uint32_t rcc_get_usart_clksel_freq(uint32_t usart, uint8_t shift) {
uint8_t clksel;
if(usart == USART6_BASE) {
clksel = (RCC_CCIPR2 >> shift) & RCC_CCIPR_USARTxSEL_MASK;
} else {
clksel = (RCC_CCIPR1 >> shift) & RCC_CCIPR_USARTxSEL_MASK;
}
switch (clksel) {
case RCC_CCIPR_USARTxSEL_PCLKx:
if(usart == USART1_BASE) {
return rcc_apb2_frequency;
}
return rcc_apb1_frequency;
case RCC_CCIPR_USARTxSEL_SYSCLK:
return rcc_ahb_frequency;
case RCC_CCIPR_USARTxSEL_HSI16:
return RCC_DEFAULT_HSI16_FREQUENCY;
case RCC_CCIPR_USARTxSEL_LSE:
return RCC_DEFAULT_LSE_FREQUENCY;
default:
cm3_assert_not_reached();
break;
}
return 0;
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the USART at base specified.
* @param usart Base address of USART to get clock frequency for.
*/
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
{
switch (usart)
{
case USART1_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART1SEL_SHIFT);
case USART2_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART2SEL_SHIFT);
case USART3_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART3SEL_SHIFT);
case USART4_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART4SEL_SHIFT);
case USART5_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART5SEL_SHIFT);
case USART6_BASE:
return rcc_get_usart_clksel_freq(usart, RCC_CCIPR2_USART6SEL_SHIFT);
default:
break;
}
cm3_assert_not_reached();
return 0;
}
/**@}*/