/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @brief libopencm3 STM32U5xx Reset and Clock Control * * @version 1.0.0 * * @date 09 Oct 2024 * * This library supports the Reset and Clock Control System in the STM32U5xx * series of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include /* Set the default clock frequencies */ #define RCC_DEFAULT_MSIS_FREQUENCY 4000000U #define RCC_DEFAULT_HSI48_FREQUENCY 48000000U #define RCC_DEFAULT_SHSI_FREQUENCY 48000000U #define RCC_DEFAULT_HSI16_FREQUENCY 16000000U #define RCC_DEFAULT_LSI_FREQUENCY 32000U #define RCC_DEFAULT_LSE_FREQUENCY 32768U uint32_t rcc_ahb_frequency = RCC_DEFAULT_MSIS_FREQUENCY; uint32_t rcc_apb1_frequency = RCC_DEFAULT_MSIS_FREQUENCY; uint32_t rcc_apb2_frequency = RCC_DEFAULT_MSIS_FREQUENCY; const struct rcc_clock_scale rcc_hsi16mhz_configs = { .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_NODIV, .ppre2 = RCC_CFGR_PPRE_NODIV, .ahb_frequency = RCC_DEFAULT_HSI16_FREQUENCY, .apb1_frequency = RCC_DEFAULT_HSI16_FREQUENCY, .apb2_frequency = RCC_DEFAULT_HSI16_FREQUENCY, }; void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_PPRE2; RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_PPRE1; RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_HPRE; RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } /** * Switch sysclock to HSI with the given parameters. * This should be usable from any point in time, but only if you have used * library functions to manage clocks. It relies on the global * @ref rcc_ahb_frequency to ensure that it reliably scales voltage up or down * as appropriate. * @param clock full struct with desired parameters */ void rcc_clock_setup_hsi(const struct rcc_clock_scale *clock) { /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); /* Don't try and go to fast for a voltage range! */ if (clock->ahb_frequency > rcc_ahb_frequency) { /* Going up, power up first */ // pwr_set_vos_scale(clock->voltage_scale); TODO rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); } else { /* going down, slow down before cutting power */ rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); // pwr_set_vos_scale(clock->voltage_scale); TODO } rcc_wait_for_osc_ready(RCC_HSI); rcc_set_sysclk_source(RCC_HSI16); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } /*---------------------------------------------------------------------------*/ /** @brief RCC Get the System Clock Source. * @returns Unsigned int32. System clock source: * @li 00 indicates MSIS * @li 01 indicates HSI16 * @li 02 indicates HSE * @li 03 indicates PLL */ uint32_t rcc_system_clock_source(void) { return (RCC_CFGR & RCC_CFGR_SWS) >> RCC_CFGR_SWS_SHIFT; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } /*---------------------------------------------------------------------------*/ /** @brief RCC Turn off an Oscillator. Disable an oscillator and power off. @note An oscillator cannot be turned off if it is selected as the system clock. @note The LSE clock is in the backup domain and cannot be disabled until the backup domain write protection has been removed (see @ref pwr_disable_backup_domain_write_protect) or the backup domain has been (see reset @ref rcc_backupdomain_reset). @param[in] osc Oscillator ID */ void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL3: RCC_CR &= ~RCC_CR_PLL3ON; break; case RCC_PLL2: RCC_CR &= ~RCC_CR_PLL2ON; break; case RCC_PLL1: RCC_CR &= ~RCC_CR_PLL1ON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_SHSI: RCC_CR &= ~RCC_CR_SHSION; break; case RCC_HSI48: RCC_CR &= ~RCC_CR_HSI48ON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_MSI: RCC_CR &= ~RCC_CR_MSIKON; break; // TODO: Should we add MSIKER? case RCC_MSIS: RCC_CR &= ~RCC_CR_MSISON; break; default: cm3_assert_not_reached(); break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Turn on an Oscillator. * * Enable an oscillator and power on. Each oscillator requires an amount of * time to settle to a usable state. Refer to datasheets for time delay * information. A status flag is available to indicate when the oscillator * becomes ready (see @ref rcc_osc_ready_int_flag and @ref * rcc_wait_for_osc_ready). * * @param osc Oscillator ID */ void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL3: RCC_CR |= RCC_CR_PLL3ON; break; case RCC_PLL2: RCC_CR |= RCC_CR_PLL2ON; break; case RCC_PLL1: RCC_CR |= RCC_CR_PLL1ON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_SHSI: RCC_CR |= RCC_CR_SHSION; break; case RCC_HSI48: RCC_CR |= RCC_CR_HSI48ON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_MSI: RCC_CR |= RCC_CR_MSIKON; break; // TODO: Should we add MSIKER? case RCC_MSIS: RCC_CR |= RCC_CR_MSISON; break; default: cm3_assert_not_reached(); break; } } /*---------------------------------------------------------------------------*/ /** @brief Returns if the oscillator is ready. * * @param osc Oscillator ID */ bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL3: return RCC_CR & RCC_CR_PLL3RDY; case RCC_PLL2: return RCC_CR & RCC_CR_PLL2RDY; case RCC_PLL1: return RCC_CR & RCC_CR_PLL1RDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_SHSI: return RCC_CR & RCC_CR_SHSIRDY; case RCC_HSI48: return RCC_CR & RCC_CR_HSI48RDY; case RCC_HSI: return RCC_CR & RCC_CR_HSIRDY; case RCC_MSI: return RCC_CR & RCC_CR_MSIKRDY; case RCC_MSIS: return RCC_CR & RCC_CR_MSISRDY; default: break; } return false; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the Source for the System Clock. * * @param clk Oscillator ID. */ void rcc_set_sysclk_source(enum rcc_osc clk) { uint32_t sw = 0x0; switch (clk) { case RCC_MSIS: sw = RCC_CFGR_SW_SYSCLKSEL_MSIS; break; case RCC_HSI16: sw = RCC_CFGR_SW_SYSCLKSEL_HSI16; break; case RCC_HSE: sw = RCC_CFGR_SW_SYSCLKSEL_HSE; break; case RCC_PLL1: sw = RCC_CFGR_SW_SYSCLKSEL_PLL; break; default: cm3_assert_not_reached(); break; } sw <<= RCC_CFGR_SW_SYSCLKSEL_SHIFT; RCC_CFGR = (RCC_CFGR & ~(RCC_CFGR_SW_SYSCLKSEL_MASK << RCC_CFGR_SW_SYSCLKSEL_SHIFT)) | sw; } /** * @brief Set the peripheral clock source * @param periph peripheral of choice, eg XXX_BASE * @param sel periphral clock source */ void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel) { volatile uint32_t *reg32; uint32_t shift; uint32_t mask; switch (periph) { case USART1_BASE: reg32 = &RCC_CCIPR1; shift = RCC_CCIPR1_USART1SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART2_BASE: reg32 = &RCC_CCIPR1; shift = RCC_CCIPR1_USART2SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART3_BASE: reg32 = &RCC_CCIPR1; shift = RCC_CCIPR1_USART3SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART4_BASE: reg32 = &RCC_CCIPR1; shift = RCC_CCIPR1_USART4SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART5_BASE: reg32 = &RCC_CCIPR1; shift = RCC_CCIPR1_USART5SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART6_BASE: reg32 = &RCC_CCIPR2; shift = RCC_CCIPR2_USART6SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; default: cm3_assert_not_reached(); break; } mask <<= shift; sel <<= shift; (*reg32) = ((*reg32) & ~mask) | sel; } static uint32_t rcc_get_usart_clksel_freq(uint32_t usart, uint8_t shift) { uint8_t clksel; if(usart == USART6_BASE) { clksel = (RCC_CCIPR2 >> shift) & RCC_CCIPR_USARTxSEL_MASK; } else { clksel = (RCC_CCIPR1 >> shift) & RCC_CCIPR_USARTxSEL_MASK; } switch (clksel) { case RCC_CCIPR_USARTxSEL_PCLKx: if(usart == USART1_BASE) { return rcc_apb2_frequency; } return rcc_apb1_frequency; case RCC_CCIPR_USARTxSEL_SYSCLK: return rcc_ahb_frequency; case RCC_CCIPR_USARTxSEL_HSI16: return RCC_DEFAULT_HSI16_FREQUENCY; case RCC_CCIPR_USARTxSEL_LSE: return RCC_DEFAULT_LSE_FREQUENCY; default: cm3_assert_not_reached(); break; } return 0; } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { switch (usart) { case USART1_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART1SEL_SHIFT); case USART2_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART2SEL_SHIFT); case USART3_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART3SEL_SHIFT); case USART4_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART4SEL_SHIFT); case USART5_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR1_USART5SEL_SHIFT); case USART6_BASE: return rcc_get_usart_clksel_freq(usart, RCC_CCIPR2_USART6SEL_SHIFT); default: break; } cm3_assert_not_reached(); return 0; } /**@}*/