Files
libopencm3-examples/examples/stm32/f4/stm32f429i-discovery/lcd-dma/lcd-spi.c
kbob 9cee61f089 [stm32f429i-discovery] Added LTDC DMA example.
This example is just using buffers and built in alpha overlay
functionality to animate a dmond floating on a checker board. After
initializing of the frame buffers only 7 registers are being modified to
implement the animation.
2015-02-24 17:14:57 -08:00

384 lines
12 KiB
C

#include "lcd-spi.h"
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Initialize the ST Micro TFT Display for DMA video using the SPI port
*/
#include <stddef.h>
#include <stdio.h>
#include <libopencm3/stm32/spi.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/cm3/nvic.h>
#include "clock.h"
#define LCD_SPI SPI5
/*
* This is an ungainly workaround (aka hack) basically I want to know
* when the SPI port is 'done' sending all of the bits out, and it is
* done when it has clocked enough bits that it would have received a
* byte. Since we're using the SPI port in write_only mode I am not
* collecting the "received" bytes into a buffer, but one could of
* course. I keep track of how many bytes should have been returned
* by decrementing the 'rx_pend' volatile. When it reaches 0 we know
* we are done.
*/
static volatile int rx_pend;
static volatile uint16_t spi_rx_buf;
/*
* This is the ISR we use. Note that the name is based on the name
* in the irq.json file of libopencm3 plus the "_isr" extension.
*/
void
spi5_isr(void)
{
spi_rx_buf = SPI_DR(SPI5);
--rx_pend;
}
/*
* For the STM32-DISCO board, SPI pins in use:
* N/C - RESET
* PC2 - CS (could be NSS but won't be)
* PF7 - SCLK (AF5) SPI5
* PD13 - DATA / CMD*
* PF9 - MOSI (AF5) SPI5
*/
/*
* void lcd_command(cmd, delay, args, arg_ptr)
*
* All singing all dancing 'do a command' feature. Basically it
* sends a command, and if args are present it sets 'data' and
* sends those along too.
*/
static void
lcd_command(uint8_t cmd, int delay, int n_args, const uint8_t *args)
{
uint32_t timeout;
int i;
gpio_clear(GPIOC, GPIO2); /* Select the LCD */
rx_pend++;
spi_send(SPI5, cmd);
/* We need to wait until it is sent, if we turn on the Data
* line too soon, it ends up confusing the display to thinking
* its a data transfer, as it samples the D/CX line on the last
* bit sent.
*/
for (timeout = 0; (timeout < 1000) && (rx_pend); timeout++) {
continue;
}
rx_pend = 0; /* sometimes, at 10Mhz we miss this */
if (n_args) {
gpio_set(GPIOD, GPIO13); /* Set the D/CX pin */
for (i = 0; i < n_args; i++) {
rx_pend++;
spi_send(SPI5, *(args+i));
}
/* This wait so that we don't pull CS too soon after
* sending the last byte of data.
*/
for (timeout = 0; (timeout < 1000) && (rx_pend); timeout++) {
continue;
}
}
gpio_set(GPIOC, GPIO2); /* Turn off chip select */
gpio_clear(GPIOD, GPIO13); /* always reset D/CX */
if (delay) {
milli_sleep(delay); /* wait, if called for */
}
}
/* Notes on the less obvious ILI9341 commands: */
/*
* ILI9341 datasheet, pp 46-49:
*
* RCM[1:0} = 0b10 command 0xb0
* DPI[2:0] = 0b110 command 0x3a
* RIM = 0 command 0xf6
* PCDIV = ???? command 0xB6
*
* Pp 239-240:
* external fosc = DOTCLK / (2 * (PCDIV + 1))
*
* ("Cube" is how the STM32F4Cube demo software sets the register.
* "Chuck" is ChuckM's lcd-serial demo, first revision.)
*
* Command 0x3A: COLMOD: Pixel Format Set LCD_PIXEL_FORMAT
* Reset Cube Chuck
* DPI[2:0] 110 (18 bit/pix) 110 101 (16 bit/pix)
* DBI[2:0] 110 (18 bit/pix) 110 101 (16 bit/pix)
*
* Command 0xB0: RGB Interface Signal LCD_RGB_INTERFACE
* Reset Cube
* Bypass: 0 (direct) 1 (memory)
* RCM[1:0] 10 10
* VSPL 0 (low) 0
* HSPL 0 (low) 0
* DPL 0 (rising) 1 (falling)
* EPL 1 (low) 0 (high)
*
* Command 0xB6: Display Function Control LCD_DFC
* Reset Cube 0A A7 27 04
* PTG[1:0] 10 10
* PT[1:0] 10 10
* REV 1 1
* GS 0 0
* SS 0 (S1->S720) 1 (S720->S1)
* SM 0 0
* ISC[3:0] 0010 (5 frames) 0111 (15 frames)
* NL[5:0] 100111 100111
* PCDIV[5:0] ? 000100
* S720->S1 moves the origin from the lower left corner to lower right
* (viewing the board so the silkscreen is upright)
*
* Command 0xF6: Interface Control LCD_INTERFACE
* Reset Cube 01 00 06
* MY_EOR 0 0
* MX_EOR 0 0
* MV_EOR 0 0
* BGR_EOR 0 0
* WEMODE 1 (wrap) 1
* EPF[1:0] 00 00
* MDT[1:0] 00 00
* ENDIAN 0 (MSB first) 0
* DM[1:0] 00 (int clk) 01 (RGB ifc)
* RM 0 (sys ifc) 1 (RGB ifc)
* RIM 0 (1 xfr/pix) 0
*/
/* ILI9341 command definitions */
/* Regulative[sic] Command Set */
#define ILI_NOP 0x00
#define ILI_RESET 0x01
#define ILI_RD_DID 0x04
#define ILI_RD_STS 0x09
#define ILI_RD_PWR_MODE 0x0a
#define ILI_RD_MADCTL 0x0b
#define ILI_RD_PXL_FMT 0x0c
#define ILI_PD_IMG_FMT 0x0d
#define ILI_RD_SIG_MODE 0x0e
#define ILI_RD_DIAG_RSLT 0x0f
#define ILI_ENTER_SLEEP 0x10
#define ILI_SLEEP_OUT 0x11
#define ILI_PARTIAL_ON 0x12
#define ILI_NORMAL_MODE_ON 0x13
#define ILI_INVERSE_ON 0x20
#define ILI_INVERSE_OFF 0x21
#define ILI_GAMMA_SET 0x26
#define ILI_DISP_OFF 0x28
#define ILI_DISP_ON 0x29
#define ILI_CAS 0x2a
#define ILI_PAS 0x2b
#define ILI_MEM_WRITE 0x2c
#define ILI_COLOR_SET 0x2d
#define ILI_MEM_READ 0x2e
#define ILI_PARTIAL_AREA 0x30
#define ILI_VERT_SCROLL_DEF 0x33
#define ILI_TEAR_EFF_OFF 0x34
#define ILI_TEAR_EFF_ON 0x35
#define ILI_MEM_ACC_CTL 0x36
#define ILI_V_SCROLL_START 0x37
#define ILI_IDLE_OFF 0x38
#define ILI_IDLE_ON 0x39
#define ILI_PIX_FMT_SET 0x3a
#define ILI_WR_MEM_CONT 0x3c
#define ILI_RD_MEM_CONT 0x3e
#define ILI_SET_TEAR_LINE 0x44
#define ILI_GET_SCANLINE 0x45
#define ILI_WR_BRIGHTNESS 0x51
#define ILI_RD_BRIGHTNESS 0x52
#define ILI_WR_CTRL 0x53
#define ILI_RD_CTRL 0x54
#define ILI_WR_CABC 0x55
#define ILI_RD_CABC 0x56
#define ILI_WR_CABC_MIN 0x5e
#define ILI_RD_CABC_MAX 0x5f
#define ILI_RD_ID1 0xda
#define ILI_RD_ID2 0xdb
#define ILI_RD_ID3 0xdc
/* Extended Command Set */
#define ILI_RGB_IFC_CTL 0xb0
#define ILI_FRM_CTL_NORM 0xb1
#define ILI_FRM_CTL_IDLE 0xb2
#define ILI_FRM_CTL_PART 0xb3
#define ILI_INVERSE_CTL 0xb4
#define ILI_PORCH_CTL 0xb5
#define ILI_FUNC_CTL 0xb6
#define ILI_ENTRY_MODE_SET 0xb7
#define ILI_BL_CTL_1 0xb8
#define ILI_BL_CTL_2 0xb9
#define ILI_BL_CTL_3 0xba
#define ILI_BL_CTL_4 0xbb
#define ILI_BL_CTL_5 0xbc
#define ILI_BL_CTL_7 0xbe
#define ILI_BL_CTL_8 0xbf
#define ILI_PWR_CTL_1 0xc0
#define ILI_PWR_CTL_2 0xc1
#define ILI_VCOM_CTL_1 0xc5
#define ILI_VCOM_CTL_2 0xc7
#define ILI_NV_MEM_WR 0xd0
#define ILI_NV_MEM_PROT_KEY 0xd1
#define ILI_NV_MEM_STATUS_RD 0xd2
#define ILI_RD_ID4 0xd3
#define ILI_POS_GAMMA 0xe0
#define ILI_NEG_GAMMA 0xe1
#define ILI_GAMMA_CTL_1 0xe2
#define ILI_GAMMA_CTL_2 0xe3
#define ILI_IFC_CTL 0xf6
/*
* This structure defines the sequence of commands to send
* to the Display in order to initialize it. The AdaFruit
* folks do something similar, it helps when debugging the
* initialization sequence for the display.
*/
#define MAX_INLINE_ARGS (sizeof(uint8_t *))
struct tft_command {
uint16_t delay; /* If you need a delay after */
uint8_t cmd; /* command to send */
uint8_t n_args; /* How many arguments it has */
union {
uint8_t args[MAX_INLINE_ARGS]; /* The first four arguments */
const uint8_t *aptr; /* More than four arguemnts */
};
};
static const uint8_t pos_gamma_args[] = { 0x0F, 0x29, 0x24, 0x0C, 0x0E,
0x09, 0x4E, 0x78, 0x3C, 0x09,
0x13, 0x05, 0x17, 0x11, 0x00 };
static const uint8_t neg_gamma_args[] = { 0x00, 0x16, 0x1B, 0x04, 0x11,
0x07, 0x31, 0x33, 0x42, 0x05,
0x0C, 0x0A, 0x28, 0x2F, 0x0F };
/*
* These are the commands we're going to send to the
* display to initialize it. We send them all, in sequence
* with occasional delays. Commands that require data bytes
* as arguments, indicate how many bytes to pull out the
* above array to include.
*
* The sequence was pieced together from the ST Micro demo
* code, the data sheet, and other sources on the web.
*/
#define EXPERIMENT 1
const struct tft_command initialization[] = {
{ 0, ILI_PWR_CTL_1, 1, .args = { 0x10 } },
{ 0, ILI_PWR_CTL_2, 1, .args = { 0x10 } },
{ 0, ILI_VCOM_CTL_1, 2, .args = { 0x45, 0x15 } },
{ 0, ILI_VCOM_CTL_2, 1, .args = { 0x90 } },
{ 0, ILI_MEM_ACC_CTL, 1, .args = { 0x08 } },
{ 0, ILI_RGB_IFC_CTL, 1, .args = { 0xc0 } },
{ 0, ILI_IFC_CTL, 3, .args = { 0x01, 0x00, 0x06 } },
{ 0, ILI_GAMMA_SET, 1, .args = { 0x01 } },
{ 0, ILI_POS_GAMMA, 15, .aptr = pos_gamma_args },
{ 0, ILI_NEG_GAMMA, 15, .aptr = neg_gamma_args },
{ +5, ILI_SLEEP_OUT, 0, .args = {} },
{ 0, ILI_DISP_ON, 0, .args = {} },
};
static void
initialize_display(const struct tft_command cmds[], size_t cmd_count)
{
size_t i;
for (i = 0; i < cmd_count; i++) {
uint8_t arg_count = cmds[i].n_args;
const uint8_t *args = cmds[i].args;
if (arg_count > MAX_INLINE_ARGS) {
args = cmds[i].aptr;
}
lcd_command(cmds[i].cmd, cmds[i].delay, arg_count, args);
}
}
/*
* void lcd_spi_init(void)
*
* Initialize the SPI port, and the through that port
* initialize the LCD controller. Note that this code
* will expect to be able to draw into the SDRAM on
> * the board, so the sdram much be initialized before
* calling this function.
*
* SPI Port and GPIO Defined - for STM32F4-Disco
*
* LCD_CS PC2
* LCD_SCK PF7
* LCD_DC PD13
* LCD_MOSI PF9
* LCD_SPI SPI5
* LCD_WIDTH 240
* LCD_HEIGHT 320
*/
void
lcd_spi_init(void)
{
uint32_t tmp;
/*
* Set up the GPIO lines for the SPI port and
* control lines on the display.
*/
rcc_periph_clock_enable(RCC_GPIOC | RCC_GPIOD | RCC_GPIOF);
gpio_mode_setup(GPIOC, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO2);
gpio_mode_setup(GPIOD, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO13);
gpio_mode_setup(GPIOF, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO7 | GPIO9);
gpio_set_af(GPIOF, GPIO_AF5, GPIO7 | GPIO9);
rx_pend = 0;
/* Implement state management hack */
nvic_enable_irq(NVIC_SPI5_IRQ);
rcc_periph_clock_enable(RCC_SPI5);
/* This should configure SPI5 as we need it configured */
tmp = SPI_SR(LCD_SPI);
SPI_CR2(LCD_SPI) |= (SPI_CR2_SSOE | SPI_CR2_RXNEIE);
/* device clocks on the rising edge of SCK with MSB first */
tmp = SPI_CR1_BAUDRATE_FPCLK_DIV_4 | /* 10.25Mhz SPI Clock (42M/4) */
SPI_CR1_MSTR | /* Master Mode */
SPI_CR1_BIDIOE | /* Write Only */
SPI_CR1_SPE; /* Enable SPI */
SPI_CR1(LCD_SPI) = tmp; /* Do it. */
if (SPI_SR(LCD_SPI) & SPI_SR_MODF) {
SPI_CR1(LCD_SPI) = tmp; /* Re-writing will reset MODF */
fprintf(stderr, "Initial mode fault.\n");
}
/* Set up the display */
initialize_display(initialization,
sizeof(initialization) / sizeof(initialization[0]));
}