Files
libopencm3-examples/examples/stm32/f4/stm32f429i-discovery/lcd-serial/lcd-spi.c

411 lines
10 KiB
C

/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Initialize the ST Micro TFT Display using the SPI port
*/
#include <stdint.h>
#include <libopencm3/stm32/spi.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/cm3/nvic.h>
#include "console.h"
#include "clock.h"
#include "sdram.h"
#include "lcd-spi.h"
/* forward prototypes for some helper functions */
static int print_decimal(int v);
static int print_hex(int v);
/* Simple double buffering, one frame is displayed, the
* other being built.
*/
uint16_t *cur_frame;
uint16_t *display_frame;
/*
* Drawing a pixel consists of storing a 16 bit value in the
* memory used to hold the frame. This code computes the address
* of the word to store, and puts in the value we pass to it.
*/
void
lcd_draw_pixel(int x, int y, uint16_t color)
{
*(cur_frame + x + y * LCD_WIDTH) = color;
}
/*
* Fun fact, same SPI port as the MEMS example but different
* I/O pins. Clearly you can't use both the SPI port and the
* MEMS chip at the same time in this example.
*
* For the STM32-DISCO board, SPI pins in use:
* N/C - RESET
* PC2 - CS (could be NSS but won't be)
* PF7 - SCLK (AF5) SPI5
* PD13 - DATA / CMD*
* PF9 - MOSI (AF5) SPI5
*/
/*
* This structure defines the sequence of commands to send
* to the Display in order to initialize it. The AdaFruit
* folks do something similar, it helps when debugging the
* initialization sequence for the display.
*/
struct tft_command {
uint16_t delay; /* If you need a delay after */
uint8_t cmd; /* command to send */
uint8_t n_args; /* How many arguments it has */
};
/* prototype for lcd_command */
static void lcd_command(uint8_t cmd, int delay, int n_args,
const uint8_t *args);
/*
* void lcd_command(cmd, delay, args, arg_ptr)
*
* All singing all dancing 'do a command' feature. Basically it
* sends a command, and if args are present it sets 'data' and
* sends those along too.
*/
static void
lcd_command(uint8_t cmd, int delay, int n_args, const uint8_t *args)
{
int i;
gpio_clear(GPIOC, GPIO2); /* Select the LCD */
(void) spi_xfer(LCD_SPI, cmd);
if (n_args) {
gpio_set(GPIOD, GPIO13); /* Set the D/CX pin */
for (i = 0; i < n_args; i++) {
(void) spi_xfer(LCD_SPI, *(args+i));
}
}
gpio_set(GPIOC, GPIO2); /* Turn off chip select */
gpio_clear(GPIOD, GPIO13); /* always reset D/CX */
if (delay) {
msleep(delay); /* wait, if called for */
}
}
/*
* This creates a 'script' of commands that can be played
* to the LCD controller to initialize it.
* One array holds the 'argument' bytes, the other
* the commands.
* Keeping them in sync is essential
*/
static const uint8_t cmd_args[] = {
0x00, 0x1B,
0x0a, 0xa2,
0x10,
0x10,
0x45, 0x15,
0x90,
/* 0xc8,*/ /* original */
/* 11001000 = MY, MX, BGR */
0x08,
0xc2,
0x55,
0x0a, 0xa7, 0x27, 0x04,
0x00, 0x00, 0x00, 0xef,
0x00, 0x00, 0x01, 0x3f,
/* 0x01, 0x00, 0x06,*/ /* original */
0x01, 0x00, 0x00, /* modified to remove RGB mode */
0x01,
0x0F, 0x29, 0x24, 0x0C, 0x0E,
0x09, 0x4E, 0x78, 0x3C, 0x09,
0x13, 0x05, 0x17, 0x11, 0x00,
0x00, 0x16, 0x1B, 0x04, 0x11,
0x07, 0x31, 0x33, 0x42, 0x05,
0x0C, 0x0A, 0x28, 0x2F, 0x0F,
};
/*
* These are the commands we're going to send to the
* display to initialize it. We send them all, in sequence
* with occasional delays. Commands that require data bytes
* as arguments, indicate how many bytes to pull out the
* above array to include.
*
* The sequence was pieced together from the ST Micro demo
* code, the data sheet, and other sources on the web.
*/
const struct tft_command initialization[] = {
{ 0, 0xb1, 2 }, /* 0x00, 0x1B, */
{ 0, 0xb6, 2 }, /* 0x0a, 0xa2, */
{ 0, 0xc0, 1 }, /* 0x10, */
{ 0, 0xc1, 1 }, /* 0x10, */
{ 0, 0xc5, 2 }, /* 0x45, 0x15, */
{ 0, 0xc7, 1 }, /* 0x90, */
{ 0, 0x36, 1 }, /* 0xc8, */
{ 0, 0xb0, 1 }, /* 0xc2, */
{ 0, 0x3a, 1 }, /* 0x55 **added, pixel format 16 bpp */
{ 0, 0xb6, 4 }, /* 0x0a, 0xa7, 0x27, 0x04, */
{ 0, 0x2A, 4 }, /* 0x00, 0x00, 0x00, 0xef, */
{ 0, 0x2B, 4 }, /* 0x00, 0x00, 0x01, 0x3f, */
{ 0, 0xf6, 3 }, /* 0x01, 0x00, 0x06, */
{ 200, 0x2c, 0 },
{ 0, 0x26, 1}, /* 0x01, */
{ 0, 0xe0, 15 }, /* 0x0F, 0x29, 0x24, 0x0C, 0x0E, */
/* 0x09, 0x4E, 0x78, 0x3C, 0x09, */
/* 0x13, 0x05, 0x17, 0x11, 0x00, */
{ 0, 0xe1, 15 }, /* 0x00, 0x16, 0x1B, 0x04, 0x11, */
/* 0x07, 0x31, 0x33, 0x42, 0x05, */
/* 0x0C, 0x0A, 0x28, 0x2F, 0x0F, */
{ 200, 0x11, 0 },
{ 0, 0x29, 0 },
{ 0, 0, 0 } /* cmd == 0 indicates last command */
};
/* prototype for initialize_display */
static void initialize_display(const struct tft_command cmds[]);
/*
* void initialize_display(struct cmds[])
*
* This is the function that sends the entire list. It also puts
* the commands it is sending to the console.
*/
static void
initialize_display(const struct tft_command cmds[])
{
int i = 0;
int arg_offset = 0;
int j;
/* Initially arg offset is zero, so each time we 'consume'
* a few bytes in the args array the offset is moved and
* that changes the pointer we send to the command function.
*/
while (cmds[i].cmd) {
console_puts("CMD: ");
print_hex(cmds[i].cmd);
console_puts(", ");
if (cmds[i].n_args) {
console_puts("ARGS: ");
for (j = 0; j < cmds[i].n_args; j++) {
print_hex(cmd_args[arg_offset+j]);
console_puts(", ");
}
}
console_puts("DELAY: ");
print_decimal(cmds[i].delay);
console_puts("ms\n");
lcd_command(cmds[i].cmd, cmds[i].delay, cmds[i].n_args,
&cmd_args[arg_offset]);
arg_offset += cmds[i].n_args;
i++;
}
console_puts("Done.\n");
}
/* prototype for test_image */
static void test_image(void);
/*
* Interesting questions:
* - How quickly can I write a full frame?
* * Take the bits sent (16 * width * height)
* and divide by the baud rate (10.25Mhz)
* * Tests in main.c show that yes, it taks 74ms.
*
* Create non-random data in the frame buffer. In our case
* a black background and a grid 16 pixels x 16 pixels of
* white lines. No line on the right edge and bottom of screen.
*/
static void
test_image(void)
{
int x, y;
uint16_t pixel;
for (x = 0; x < LCD_WIDTH; x++) {
for (y = 0; y < LCD_HEIGHT; y++) {
pixel = 0; /* all black */
if ((x % 16) == 0) {
pixel = 0xffff; /* all white */
}
if ((y % 16) == 0) {
pixel = 0xffff; /* all white */
}
lcd_draw_pixel(x, y, pixel);
}
}
}
/*
* void lcd_show_frame(void)
*
* Dump an entire frame to the LCD all at once. In theory you
* could call this with DMA but that is made more difficult by
* the implementation of SPI and the modules interpretation of
* D/CX line.
*/
void lcd_show_frame(void)
{
uint16_t *t;
uint8_t size[4];
t = display_frame;
display_frame = cur_frame;
cur_frame = t;
/* */
size[0] = 0;
size[1] = 0;
size[2] = (LCD_WIDTH >> 8) & 0xff;
size[3] = (LCD_WIDTH) & 0xff;
lcd_command(0x2A, 0, 4, (const uint8_t *)&size[0]);
size[0] = 0;
size[1] = 0;
size[2] = (LCD_HEIGHT >> 8) & 0xff;
size[3] = LCD_HEIGHT & 0xff;
lcd_command(0x2B, 0, 4, (const uint8_t *)&size[0]);
lcd_command(0x2C, 0, FRAME_SIZE_BYTES, (const uint8_t *)display_frame);
}
/*
* void lcd_spi_init(void)
*
* Initialize the SPI port, and the through that port
* initialize the LCD controller. Note that this code
* will expect to be able to draw into the SDRAM on
* the board, so the sdram much be initialized before
* calling this function.
*
* SPI Port and GPIO Defined - for STM32F4-Disco
*
* LCD_CS PC2
* LCD_SCK PF7
* LCD_DC PD13
* LCD_MOSI PF9
* LCD_SPI SPI5
* LCD_WIDTH 240
* LCD_HEIGHT 320
*/
void
lcd_spi_init(void)
{
/*
* Set up the GPIO lines for the SPI port and
* control lines on the display.
*/
rcc_periph_clock_enable(RCC_GPIOC | RCC_GPIOD | RCC_GPIOF);
gpio_mode_setup(GPIOC, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO2);
gpio_mode_setup(GPIOD, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO13);
gpio_mode_setup(GPIOF, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO7 | GPIO9);
gpio_set_af(GPIOF, GPIO_AF5, GPIO7 | GPIO9);
cur_frame = (uint16_t *)(SDRAM_BASE_ADDRESS);
display_frame = cur_frame + (LCD_WIDTH * LCD_HEIGHT);
rcc_periph_clock_enable(RCC_SPI5);
spi_init_master(LCD_SPI, SPI_CR1_BAUDRATE_FPCLK_DIV_4,
SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE,
SPI_CR1_CPHA_CLK_TRANSITION_1,
SPI_CR1_DFF_8BIT,
SPI_CR1_MSBFIRST);
spi_enable_ss_output(LCD_SPI);
spi_enable(LCD_SPI);
/* Set up the display */
console_puts("Initialize the display.\n");
initialize_display(initialization);
/* create a test image */
console_puts("Generating Test Image\n");
test_image();
/* display it on the LCD */
console_puts("And ... voila\n");
lcd_show_frame();
}
/*
* int len = print_decimal(int value)
*
* Very simple routine to print an integer as a decimal
* number on the console.
*/
int
print_decimal(int num)
{
int ndx = 0;
char buf[10];
int len = 0;
char is_signed = 0;
if (num < 0) {
is_signed++;
num = 0 - num;
}
buf[ndx++] = '\000';
do {
buf[ndx++] = (num % 10) + '0';
num = num / 10;
} while (num != 0);
ndx--;
if (is_signed != 0) {
console_putc('-');
len++;
}
while (buf[ndx] != '\000') {
console_putc(buf[ndx--]);
len++;
}
return len; /* number of characters printed */
}
/*
* int print_hex(int value)
*
* Very simple routine for printing out hex constants.
*/
static int print_hex(int v)
{
int ndx = 0;
char buf[10];
int len;
buf[ndx++] = '\000';
do {
char c = v & 0xf;
buf[ndx++] = (c > 9) ? '7' + c : '0' + c;
v = (v >> 4) & 0x0fffffff;
} while (v != 0);
ndx--;
console_puts("0x");
len = 2;
while (buf[ndx] != '\000') {
console_putc(buf[ndx--]);
len++;
}
return len; /* number of characters printed */
}