Files
libopencm3-examples/examples/lm4f/stellaris-ek-lm4f120xl/usb_bulk_dev/usb_bulk_dev.c
2013-06-16 19:17:37 -07:00

476 lines
13 KiB
C

/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \addtogroup Examples
*
* Establishes a basic USB devices with interrupt-driven and polled IN and OUT
* bulk endpoints.
*/
#include <libopencm3/lm4f/rcc.h>
#include <libopencm3/lm4f/gpio.h>
#include <libopencm3/lm4f/nvic.h>
#include <libopencm3/usb/usbd.h>
#include <libopencm3/lm4f/usb.h>
#include<stdio.h>
int _write(int file, char *ptr, int len);
void uart_setup(void);
/* =============================================================================
* = Clock control definitions
* ---------------------------------------------------------------------------*/
/* This is how the RGB LED is connected on the stellaris launchpad */
#define RGB_PORT GPIOF
enum {
LED_R = GPIO1,
LED_G = GPIO3,
LED_B = GPIO2,
};
/* This is how the user switches are connected to GPIOF */
enum {
USR_SW1 = GPIO4,
USR_SW2 = GPIO0,
};
/* The divisors we loop through when the user presses SW2 */
enum {
PLL_DIV_80MHZ = 5,
PLL_DIV_57MHZ = 7,
PLL_DIV_40MHZ = 10,
PLL_DIV_30MHZ = 13,
PLL_DIV_20MHZ = 20,
PLL_DIV_16MHZ = 25,
};
static const uint8_t plldiv[] = {
PLL_DIV_80MHZ,
PLL_DIV_57MHZ,
PLL_DIV_40MHZ,
PLL_DIV_30MHZ,
PLL_DIV_20MHZ,
PLL_DIV_16MHZ,
0
};
/* The PLL divisor we are currently on */
static size_t ipll = 0;
/* Are we bypassing the PLL, or not? */
static bool bypass = false;
/* =============================================================================
* = USB descriptors
* ---------------------------------------------------------------------------*/
static const struct usb_device_descriptor dev_descr = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = 0x0110,
.bDeviceClass = 0xff,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = 64,
.idVendor = 0xc03e,
.idProduct = 0xb007,
.bcdDevice = 0x0110,
.iManufacturer = 1,
.iProduct = 2,
.iSerialNumber = 3,
.bNumConfigurations = 1,
};
static const struct usb_endpoint_descriptor bulk_endp[] = {{
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x01,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x82,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x03,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x84,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x05,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x86,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}};
static const struct usb_interface_descriptor bulk_iface[] = {{
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bNumEndpoints = 6,
.bInterfaceClass = 0xff,
.bInterfaceSubClass = 0xff,
.bInterfaceProtocol = 0xff,
.iInterface = 0,
.endpoint = bulk_endp,
.extra = NULL,
.extralen = 0,
}};
static const struct usb_interface ifaces[] = {{
.num_altsetting = 1,
.altsetting = bulk_iface,
}};
static const struct usb_config_descriptor config_descr = {
.bLength = USB_DT_CONFIGURATION_SIZE,
.bDescriptorType = USB_DT_CONFIGURATION,
.wTotalLength = 0,
.bNumInterfaces = 1,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = 0x80,
.bMaxPower = 0x32,
.interface = ifaces,
};
extern usbd_driver lm4f_usb_driver;
static usbd_device *bulk_dev;
static uint8_t usbd_control_buffer[128];
static uint8_t config_set = 0;
static const char *usb_strings[] = {
"libopencm3",
"usb_dev_bulk",
"none",
"DEMO",
};
/* =============================================================================
* = USB Module
* ---------------------------------------------------------------------------*/
/*
* Mux the USB pins to their analog function
*/
static void usb_setup(void)
{
/* USB pins are connected to port D */
periph_clock_enable(RCC_GPIOD);
/* Mux USB pins to their analog function */
gpio_mode_setup(GPIOD, GPIO_MODE_ANALOG, GPIO_PUPD_NONE, GPIO4 | GPIO5);
}
/*
* Enable USB interrupts
*
* We don't enable the USB peripheral clock here, but we need it on in order to
* acces USB registers. Hence, this must be called after usbd_init().
*/
static void usb_ints_setup(void)
{
uint8_t usbints;
/* Gimme some interrupts */
usbints = USB_INT_RESET | USB_INT_DISCON | USB_INT_RESUME |
USB_INT_SUSPEND | USB_INT_SOF;
usb_enable_interrupts(usbints, 0xff, 0xff);
nvic_enable_irq(NVIC_USB0_IRQ);
}
/*
* Callback for the interrupt-driven OUT endpoint
*
* This gets called whenever a new OUT packet has arrived.
*/
static void bulk_rx_cb(usbd_device * usbd_dev, uint8_t ep)
{
char buf[64] __attribute__ ((aligned(4)));
(void)ep;
/* Read the packet to clear the FIFO and make room for a new packet */
usbd_ep_read_packet(usbd_dev, 0x01, buf, 64);
}
/*
* Callback for the interrupt-driven IN endpoint
*
* This gets called whenever an IN packet has been successfully transmitted.
*/
static void bulk_tx_cb(usbd_device * usbd_dev, uint8_t ep)
{
char buf[64] __attribute__ ((aligned(4)));
(void)ep;
/* Keep sending packets */
usbd_ep_write_packet(usbd_dev, 0x82, buf, 64);
}
/*
* Initialize the USB configuration
*
* Called after the host issues a SetConfiguration request.
*/
static void set_config(usbd_device * usbd_dev, uint16_t wValue)
{
uint8_t data[64] __attribute__ ((aligned(4)));
(void)wValue;
printf("Configuring endpoints.\n\r");
usbd_ep_setup(usbd_dev, 0x01, USB_ENDPOINT_ATTR_BULK, 64, bulk_rx_cb);
usbd_ep_setup(usbd_dev, 0x82, USB_ENDPOINT_ATTR_BULK, 64, bulk_tx_cb);
usbd_ep_setup(usbd_dev, 0x03, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x84, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x05, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x86, USB_ENDPOINT_ATTR_BULK, 64, NULL);
/* The main loop will not touch the EPs until this is set */
config_set = 1;
/*
* "Bootstrap" the callback-based endpoint
* Data will stay in the FIFO until the host reads it. Once it's sent
* our callback kicks in and writes another packet in the FIFO.
*/
usbd_ep_write_packet(bulk_dev, 0x82, data, 64);
printf("Done.\n\r");
}
/* =============================================================================
* = Clock control module
* ---------------------------------------------------------------------------*/
/*
* Setup the buttons and interrupts
*/
static void button_setup(void)
{
/*
* Configure GPIOF
* This port is used to control the RGB LED
*/
periph_clock_enable(RCC_GPIOF);
/*
* Now take care of our buttons
*/
const uint32_t btnpins = USR_SW1 | USR_SW2;
/*
* PF0 is a locked by default. We need to unlock it before we can
* re-purpose it as a GPIO pin.
*/
gpio_unlock_commit(GPIOF, USR_SW2);
/* Configure pins as inputs, with pull-up. */
gpio_mode_setup(GPIOF, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, btnpins);
/* Trigger interrupt on rising-edge (when button is depressed) */
gpio_configure_trigger(GPIOF, GPIO_TRIG_EDGE_RISE, btnpins);
/* Finally, Enable interrupt */
gpio_enable_interrupts(GPIOF, btnpins);
/* Enable the interrupt in the NVIC as well */
nvic_enable_irq(NVIC_GPIOF_IRQ);
}
/* =============================================================================
* = A main() function which does not need to do too much
* ---------------------------------------------------------------------------*/
int main(void)
{
uint8_t data[65] __attribute__ ((aligned(4)));
gpio_enable_ahb_aperture();
rcc_sysclk_config(OSCSRC_MOSC, XTAL_16M, PLL_DIV_80MHZ);
/* We use the UART for debugging */
uart_setup();
/* And the buttons for changing the system clock on-the-fly */
button_setup();
/* Mux the GPIO pins to the USB peripheral */
usb_setup();
/* Let the stack take care of the rest */
bulk_dev = usbd_init(&lm4f_usb_driver, &dev_descr, &config_descr,
usb_strings, 4,
usbd_control_buffer, sizeof(usbd_control_buffer));
usbd_register_set_config_callback(bulk_dev, set_config);
/* Enable the interrupts. */
usb_ints_setup();
/* HALT! Don't touch the EP's until we configure them */
while (!config_set) ;
/*
* For our polled endpoints, we just read and write continuously. The
* driver will only move data in or out of the FIFOs if it is safe to
* do so.
*/
while (1) {
usbd_ep_read_packet(bulk_dev, 0x03, data, 64);
usbd_ep_write_packet(bulk_dev, 0x84, data, 64);
/*
* On endpoints 5 and 6, we deliberately misalign the buffer.
* This degrades the endpoint performance.
*/
usbd_ep_read_packet(bulk_dev, 0x05, data + 1, 64);
usbd_ep_write_packet(bulk_dev, 0x86, data + 1, 64);
}
/* Never reached */
return 0;
}
/* =============================================================================
* = USB interrupt service routine. All the magic happens here
* ---------------------------------------------------------------------------*/
void usb0_isr(void)
{
usbd_poll(bulk_dev);
}
/* =============================================================================
* = GPIO interrupt service routine. Pressing a button gets us here.
* ---------------------------------------------------------------------------*/
void gpiof_isr(void)
{
uint8_t serviced_irqs = 0;
if (gpio_is_interrupt_source(GPIOF, USR_SW1)) {
/* SW1 was just depressed */
bypass = !bypass;
if (bypass) {
rcc_pll_bypass_enable();
/*
* The divisor is still applied to the raw clock.
* Disable the divisor, or we'll divide the raw clock.
*/
SYSCTL_RCC &= ~SYSCTL_RCC_USESYSDIV;
printf("Changing system clock to 16MHz MOSC\n\r");
} else {
rcc_change_pll_divisor(plldiv[ipll]);
printf("Changing system clock to %iMHz\n\r",
400 / plldiv[ipll]);
}
/* Clear interrupt source */
serviced_irqs |= USR_SW1;
}
if (gpio_is_interrupt_source(GPIOF, USR_SW2)) {
/* SW2 was just depressed */
if (!bypass) {
if (plldiv[++ipll] == 0)
ipll = 0;
printf("Changing system clock to %iMHz\n\r",
400 / plldiv[ipll]);
rcc_change_pll_divisor(plldiv[ipll]);
}
/* Clear interrupt source */
serviced_irqs |= USR_SW2;
}
gpio_clear_interrupt_flag(GPIOF, serviced_irqs);
}
/* =============================================================================
* = Debug module
* ---------------------------------------------------------------------------*/
#include <libopencm3/lm4f/uart.h>
#include <errno.h>
/*
* Initialize the UART
*/
void uart_setup(void)
{
/* Enable GPIOA in run mode. */
periph_clock_enable(RCC_GPIOA);
/* Configure PA0 and PA1 as alternate function pins */
gpio_set_af(GPIOA, 1, GPIO0 | GPIO1);
/* Enable the UART clock */
periph_clock_enable(RCC_UART0);
/* Slight delay before we can access the UART registers */
__asm__("nop");
__asm__("nop");
__asm__("nop");
/* Disable the UART while we mess with its setings */
uart_disable(UART0);
/* Configure the UART clock source */
uart_clock_from_piosc(UART0);
/* Set communication parameters */
uart_set_baudrate(UART0, 921600);
/* Set 8N1 */
uart_set_databits(UART0, 8);
uart_set_parity(UART0, UART_PARITY_NONE);
uart_set_stopbits(UART0, 1);
/* Enable FIFOs */
UART_LCRH(UART0) |= UART_LCRH_FEN;
/* Now that we're done messing with the settings, enable the UART */
uart_enable(UART0);
}
/*
* Write to the debug port
*
* This is called whenever printf is used. We write stdio to the UART.
*/
int _write(int file, char *ptr, int len)
{
int i;
if (file == 1) {
for (i = 0; i < len; i++)
uart_send_blocking(UART0, ptr[i]);
return i;
}
errno = EIO;
return -1;
}