/* This is the core graphics library for all our displays, providing a common set of graphics primitives (points, lines, circles, etc.). It needs to be paired with a hardware-specific library for each display device we carry (to handle the lower-level functions). Adafruit invests time and resources providing this open source code, please support Adafruit & open-source hardware by purchasing products from Adafruit! Copyright (c) 2013 Adafruit Industries. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Modified the AdaFruit library to be a C library, changed the font and * generally munged it in a variety of ways, creating a reasonably quick * and dirty way to put something "interesting" on the LCD display. * --Chuck McManis (2013, 2014) * */ #include #include #include #include "gfx.h" #include "font-7x12.c" #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) struct gfx_state __gfx_state; void gfx_drawPixel(int x, int y, uint16_t color) { if ((x < 0) || (x >= __gfx_state._width) || (y < 0) || (y >= __gfx_state._height)) { return; // off screen so don't draw it } (__gfx_state.drawpixel)(x, y, color); } #define true 1 void gfx_init(void (*pixel_func)(int, int, uint16_t), int width, int height) { __gfx_state._width = width; __gfx_state._height = height; __gfx_state.rotation = 0; __gfx_state.cursor_y = __gfx_state.cursor_x = 0; __gfx_state.textsize = 1; __gfx_state.textcolor = 0; __gfx_state.textbgcolor = 0xFFFF; __gfx_state.wrap = true; __gfx_state.drawpixel = pixel_func; } // Draw a circle outline void gfx_drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; gfx_drawPixel(x0 , y0+r, color); gfx_drawPixel(x0 , y0-r, color); gfx_drawPixel(x0+r, y0 , color); gfx_drawPixel(x0-r, y0 , color); while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; gfx_drawPixel(x0 + x, y0 + y, color); gfx_drawPixel(x0 - x, y0 + y, color); gfx_drawPixel(x0 + x, y0 - y, color); gfx_drawPixel(x0 - x, y0 - y, color); gfx_drawPixel(x0 + y, y0 + x, color); gfx_drawPixel(x0 - y, y0 + x, color); gfx_drawPixel(x0 + y, y0 - x, color); gfx_drawPixel(x0 - y, y0 - x, color); } } void gfx_drawCircleHelper( int16_t x0, int16_t y0, int16_t r, uint8_t cornername, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x4) { gfx_drawPixel(x0 + x, y0 + y, color); gfx_drawPixel(x0 + y, y0 + x, color); } if (cornername & 0x2) { gfx_drawPixel(x0 + x, y0 - y, color); gfx_drawPixel(x0 + y, y0 - x, color); } if (cornername & 0x8) { gfx_drawPixel(x0 - y, y0 + x, color); gfx_drawPixel(x0 - x, y0 + y, color); } if (cornername & 0x1) { gfx_drawPixel(x0 - y, y0 - x, color); gfx_drawPixel(x0 - x, y0 - y, color); } } } void gfx_fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { gfx_drawFastVLine(x0, y0-r, 2*r+1, color); gfx_fillCircleHelper(x0, y0, r, 3, 0, color); } // Used to do circles and roundrects void gfx_fillCircleHelper(int16_t x0, int16_t y0, int16_t r, uint8_t cornername, int16_t delta, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x1) { gfx_drawFastVLine(x0+x, y0-y, 2*y+1+delta, color); gfx_drawFastVLine(x0+y, y0-x, 2*x+1+delta, color); } if (cornername & 0x2) { gfx_drawFastVLine(x0-x, y0-y, 2*y+1+delta, color); gfx_drawFastVLine(x0-y, y0-x, 2*x+1+delta, color); } } } // Bresenham's algorithm - thx wikpedia void gfx_drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t color) { int16_t steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } for (; x0<=x1; x0++) { if (steep) { gfx_drawPixel(y0, x0, color); } else { gfx_drawPixel(x0, y0, color); } err -= dy; if (err < 0) { y0 += ystep; err += dx; } } } // Draw a rectangle void gfx_drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { gfx_drawFastHLine(x, y, w, color); gfx_drawFastHLine(x, y+h-1, w, color); gfx_drawFastVLine(x, y, h, color); gfx_drawFastVLine(x+w-1, y, h, color); } void gfx_drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Update in subclasses if desired! gfx_drawLine(x, y, x, y+h-1, color); } void gfx_drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Update in subclasses if desired! gfx_drawLine(x, y, x+w-1, y, color); } void gfx_fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // Update in subclasses if desired! int16_t i; for (i=x; i= y1 >= y0) if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if (y1 > y2) { swap(y2, y1); swap(x2, x1); } if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing a = b = x0; if(x1 < a) a = x1; else if(x1 > b) b = x1; if(x2 < a) a = x2; else if(x2 > b) b = x2; gfx_drawFastHLine(a, y0, b-a+1, color); return; } int16_t dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0; // For upper part of triangle, find scanline crossings for segments // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1 // is included here (and second loop will be skipped, avoiding a /0 // error there), otherwise scanline y1 is skipped here and handled // in the second loop...which also avoids a /0 error here if y0=y1 // (flat-topped triangle). if(y1 == y2) last = y1; // Include y1 scanline else last = y1-1; // Skip it for(y=y0; y<=last; y++) { a = x0 + sa / dy01; b = x0 + sb / dy02; sa += dx01; sb += dx02; /* longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); gfx_drawFastHLine(a, y, b-a+1, color); } // For lower part of triangle, find scanline crossings for segments // 0-2 and 1-2. This loop is skipped if y1=y2. sa = dx12 * (y - y1); sb = dx02 * (y - y0); for(; y<=y2; y++) { a = x1 + sa / dy12; b = x0 + sb / dy02; sa += dx12; sb += dx02; /* longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); gfx_drawFastHLine(a, y, b-a+1, color); } } void gfx_drawBitmap(int16_t x, int16_t y, const uint8_t *bitmap, int16_t w, int16_t h, uint16_t color) { int16_t i, j, byteWidth = (w + 7) / 8; for(j=0; j> (i & 7))) { gfx_drawPixel(x+i, y+j, color); } } } } void gfx_write(uint8_t c) { if (c == '\n') { __gfx_state.cursor_y += __gfx_state.textsize*12; __gfx_state.cursor_x = 0; } else if (c == '\r') { // skip em } else { gfx_drawChar(__gfx_state.cursor_x, __gfx_state.cursor_y, c, __gfx_state.textcolor, __gfx_state.textbgcolor, __gfx_state.textsize); __gfx_state.cursor_x += __gfx_state.textsize*8; if (__gfx_state.wrap && (__gfx_state.cursor_x > (__gfx_state._width - __gfx_state.textsize*8))) { __gfx_state.cursor_y += __gfx_state.textsize*12; __gfx_state.cursor_x = 0; } } } void gfx_puts(char *s) { while (*s) { gfx_write(*s); s++; } } // Draw a character void gfx_drawChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg, uint8_t size) { int8_t i, j, line; int8_t descender; unsigned const char *glyph; glyph = &mcm_font[(c & 0x7f) * 9]; descender = (*glyph & 0x80) != 0; for (i=0; i<12; i++ ) { line = 0x00; if ( descender ) { if (i > 2) { line = *(glyph + (i - 3)); } } else { if (i < 9) { line = *(glyph + i); } } line &= 0x7f; for (j = 0; j<8; j++) { if (line & 0x80) { if (size == 1) // default size gfx_drawPixel(x+j, y+i, color); else { // big size gfx_fillRect(x+(j*size), y+(i*size), size, size, color); } } else if (bg != color) { if (size == 1) // default size gfx_drawPixel(x+j, y+i, bg); else { // big size gfx_fillRect(x+j*size, y+i*size, size, size, bg); } } line <<= 1; } } } void gfx_setCursor(int16_t x, int16_t y) { __gfx_state.cursor_x = x; __gfx_state.cursor_y = y; } void gfx_setTextSize(uint8_t s) { __gfx_state.textsize = (s > 0) ? s : 1; } void gfx_setTextColor(uint16_t c, uint16_t b) { __gfx_state.textcolor = c; __gfx_state.textbgcolor = b; } void gfx_setTextWrap(uint8_t w) { __gfx_state.wrap = w; } uint8_t gfx_getRotation(void) { return __gfx_state.rotation; } void gfx_setRotation(uint8_t x) { __gfx_state.rotation = (x & 3); switch(__gfx_state.rotation) { case 0: case 2: __gfx_state._width = GFX_WIDTH; __gfx_state._height = GFX_HEIGHT; break; case 1: case 3: __gfx_state._width = GFX_HEIGHT; __gfx_state._height = GFX_WIDTH; break; } } // Return the size of the display (per current rotation) uint16_t gfx_width(void) { return __gfx_state._width; } uint16_t gfx_height(void) { return __gfx_state._height; }