[stm32f429i-discovery] Added LTDC DMA example.

This example is just using buffers and built in alpha overlay
functionality to animate a dmond floating on a checker board. After
initializing of the frame buffers only 7 registers are being modified to
implement the animation.
This commit is contained in:
kbob
2015-02-15 09:14:33 -08:00
committed by Piotr Esden-Tempski
parent 408ba8c885
commit 9cee61f089
11 changed files with 1514 additions and 1 deletions

View File

@@ -0,0 +1,10 @@
OBJS = sdram.o clock.o console.o lcd-spi.o
BINARY = lcd-dma
# we use sin/cos from the library
LDLIBS += -lm
LDSCRIPT = ../stm32f429i-discovery.ld
include ../../Makefile.include

View File

@@ -0,0 +1,75 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Now this is just the clock setup code from systick-blink as it is the
* transferrable part.
*/
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/systick.h>
/* Common function descriptions */
#include "clock.h"
/* milliseconds since boot */
static volatile uint32_t system_millis;
/* Called when systick fires */
void sys_tick_handler(void)
{
system_millis++;
}
/* simple sleep for delay milliseconds */
void milli_sleep(uint32_t delay)
{
uint32_t wake = system_millis + delay;
while (wake > system_millis) {
continue;
}
}
/* Getter function for the current time */
uint32_t mtime(void)
{
return system_millis;
}
/*
* clock_setup(void)
*
* This function sets up both the base board clock rate
* and a 1khz "system tick" count. The SYSTICK counter is
* a standard feature of the Cortex-M series.
*/
void clock_setup(void)
{
/* Base board frequency, set to 168Mhz */
rcc_clock_setup_hse_3v3(&hse_8mhz_3v3[CLOCK_3V3_168MHZ]);
/* clock rate / 168000 to get 1mS interrupt rate */
systick_set_reload(168000);
systick_set_clocksource(STK_CSR_CLKSOURCE_AHB);
systick_counter_enable();
/* this done last */
systick_interrupt_enable();
}

View File

@@ -0,0 +1,17 @@
/*
* This include file describes the functions exported by clock.c
*/
#ifndef __CLOCK_H
#define __CLOCK_H
#include <stdint.h>
/*
* Definitions for functions being abstracted out
*/
void milli_sleep(uint32_t);
uint32_t mtime(void);
void clock_setup(void);
#endif /* generic header protector */

View File

@@ -0,0 +1,274 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Interrupt drive Console code (extracted from the usart-irq example)
*
*/
#include <stdint.h>
#include <stdio.h>
#include <setjmp.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/iwdg.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/cm3/cortex.h>
#include "clock.h"
#include "console.h"
/* This is a ring buffer to holding characters as they are typed
* it maintains both the place to put the next character received
* from the UART, and the place where the last character was
* read by the program. See the README file for a discussion of
* the failure semantics.
*/
#define RECV_BUF_SIZE 128 /* Arbitrary buffer size */
char recv_buf[RECV_BUF_SIZE];
static volatile int recv_ndx_nxt; /* Next place to store */
static volatile int recv_ndx_cur; /* Next place to read */
/* For interrupt handling we add a new function which is called
* when receive interrupts happen. The name (usart1_isr) is created
* by the irq.json file in libopencm3 calling this interrupt for
* USART1 'usart1', adding the suffix '_isr', and then weakly binding
* it to the 'do nothing' interrupt function in vec.c.
*
* By defining it in this file the linker will override that weak
* binding and instead bind it here, but you have to get the name
* right or it won't work. And you'll wonder where your interrupts
* are going.
*/
void usart1_isr(void)
{
uint32_t reg;
int i;
do {
reg = USART_SR(CONSOLE_UART);
if (reg & USART_SR_RXNE) {
recv_buf[recv_ndx_nxt] = USART_DR(CONSOLE_UART);
#ifdef RESET_ON_CTRLC
/* Check for "reset" */
if (recv_buf[recv_ndx_nxt] == '\003') {
scb_reset_system();
}
#endif
/* Check for "overrun" */
i = (recv_ndx_nxt + 1) % RECV_BUF_SIZE;
if (i != recv_ndx_cur) {
recv_ndx_nxt = i;
}
}
} while ((reg & USART_SR_RXNE) != 0);
/* can read back-to-back interrupts */
}
/*
* console_putc(char c)
*
* Send the character 'c' to the USART, wait for the USART
* transmit buffer to be empty first.
*/
void console_putc(char c)
{
uint32_t reg;
do {
reg = USART_SR(CONSOLE_UART);
} while ((reg & USART_SR_TXE) == 0);
USART_DR(CONSOLE_UART) = (uint16_t) c & 0xff;
}
/*
* char = console_getc(int wait)
*
* Check the console for a character. If the wait flag is
* non-zero. Continue checking until a character is received
* otherwise return 0 if called and no character was available.
*
* The implementation is a bit different however, now it looks
* in the ring buffer to see if a character has arrived.
*/
char console_getc(int wait)
{
char c = 0;
while ((wait != 0) && (recv_ndx_cur == recv_ndx_nxt));
if (recv_ndx_cur != recv_ndx_nxt) {
c = recv_buf[recv_ndx_cur];
recv_ndx_cur = (recv_ndx_cur + 1) % RECV_BUF_SIZE;
}
return c;
}
/*
* void console_puts(char *s)
*
* Send a string to the console, one character at a time, return
* after the last character, as indicated by a NUL character, is
* reached.
*/
void console_puts(char *s)
{
while (*s != '\000') {
console_putc(*s);
/* Add in a carraige return, after sending line feed */
if (*s == '\n') {
console_putc('\r');
}
s++;
}
}
/*
* int console_gets(char *s, int len)
*
* Wait for a string to be entered on the console, limited
* support for editing characters (back space and delete)
* end when a <CR> character is received.
*/
int console_gets(char *s, int len)
{
char *t = s;
char c;
*t = '\000';
/* read until a <CR> is received */
while ((c = console_getc(1)) != '\r') {
if ((c == '\010') || (c == '\127')) {
if (t > s) {
/* send ^H ^H to erase previous character */
console_puts("\010 \010");
t--;
}
} else {
*t = c;
console_putc(c);
if ((t - s) < len) {
t++;
}
}
/* update end of string with NUL */
*t = '\000';
}
return t - s;
}
/*
* console_setup(int baudrate)
*
* Set the pins and clocks to create a console that we can
* use for serial messages and getting text from the user.
*/
void console_setup(int baud)
{
/* MUST enable the GPIO clock in ADDITION to the USART clock */
rcc_periph_clock_enable(RCC_GPIOA);
/* This example uses PD5 and PD6 for Tx and Rx respectively
* but other pins are available for this role on USART1 (our chosen
* USART) as well, such as PA2 and PA3. You can also split them
* so PA2 for Tx, PD6 for Rx but you would have to enable both
* the GPIOA and GPIOD clocks in that case
*/
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9 | GPIO10);
/* Actual Alternate function number (in this case 7) is part
* depenedent, CHECK THE DATA SHEET for the right number to
* use.
*/
gpio_set_af(GPIOA, GPIO_AF7, GPIO9 | GPIO10);
/* This then enables the clock to the USART1 peripheral which is
* attached inside the chip to the APB2 bus. Different peripherals
* attach to different buses, and even some UARTS are attached to
* APB1 and some to APB2, again the data sheet is useful here.
*/
rcc_periph_clock_enable(RCC_USART1);
/* Set up USART/UART parameters using the libopencm3 helper functions */
usart_set_baudrate(CONSOLE_UART, baud);
usart_set_databits(CONSOLE_UART, 8);
usart_set_stopbits(CONSOLE_UART, USART_STOPBITS_1);
usart_set_mode(CONSOLE_UART, USART_MODE_TX_RX);
usart_set_parity(CONSOLE_UART, USART_PARITY_NONE);
usart_set_flow_control(CONSOLE_UART, USART_FLOWCONTROL_NONE);
usart_enable(CONSOLE_UART);
/* Enable interrupts from the USART */
nvic_enable_irq(NVIC_USART1_IRQ);
/* Specifically enable receive interrupts */
usart_enable_rx_interrupt(CONSOLE_UART);
}
static ssize_t console_read(void *cookie, char *buf, size_t size)
{
cookie = cookie; /* -Wunused-parameter */
size_t i;
for (i = 0; i < size; i++) {
char c = console_getc(1);
buf[i] = c;
if (c == '\r') {
buf[i] = '\n';
i++;
break;
}
}
return i;
}
static ssize_t console_write(void *cookie, const char *buf, size_t size)
{
cookie = cookie; /* -Wunused-parameter */
size_t i;
for (i = 0; i < size; i++) {
char c = buf[i];
if (c == '\n') {
console_putc('\r');
}
console_putc(c);
}
return size;
}
void console_stdio_setup()
{
cookie_io_functions_t console_input_fns = {
.read = console_read,
.write = NULL,
.seek = NULL,
.close = NULL
};
cookie_io_functions_t console_output_fns = {
.read = NULL,
.write = console_write,
.seek = NULL,
.close = NULL
};
stdin = fopencookie(NULL, "r", console_input_fns);
stdout = fopencookie(NULL, "w", console_output_fns);
stderr = fopencookie(NULL, "w", console_output_fns);
setlinebuf(stdout);
setbuf(stderr, NULL);
}

View File

@@ -0,0 +1,57 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __CONSOLE_H
#define __CONSOLE_H
/*
* Some definitions of our console "functions" attached to the
* USART.
*
* These define sort of the minimum "library" of functions which
* we can use on a serial port. If you wish to use a different
* USART there are several things to change:
* - CONSOLE_UART change this
* - Change the peripheral enable clock
* - add usartx_isr for interrupts
* - nvic_enable_interrupt(your choice of USART/UART)
* - GPIO pins for transmit/receive
* (may be on different alternate functions as well)
*/
#define CONSOLE_UART USART1
/*
* Our simple console definitions
*/
void console_putc(char c);
char console_getc(int wait);
void console_puts(char *s);
int console_gets(char *s, int len);
void console_setup(int baudrate);
/* Connect stdin, stdout, stderr to the console. */
extern void console_stdio_setup(void);
/* this is for fun, if you type ^C to this example it will reset */
#define RESET_ON_CTRLC
#endif

View File

@@ -0,0 +1,495 @@
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/ltdc.h>
#include "clock.h"
#include "console.h"
#include "lcd-spi.h"
#include "sdram.h"
#define LCD_WIDTH 240
#define LCD_HEIGHT 320
#define REFRESH_RATE 70 /* Hz */
#define HSYNC 10
#define HBP 20
#define HFP 10
#define VSYNC 2
#define VBP 2
#define VFP 4
/* Layer 1 (bottom layer) is ARGB8888 format, full screen. */
typedef uint32_t layer1_pixel;
#define LCD_LAYER1_PIXFORMAT LTDC_LxPFCR_ARGB8888
layer1_pixel *const lcd_layer1_frame_buffer = (void *)SDRAM_BASE_ADDRESS;
#define LCD_LAYER1_PIXEL_SIZE (sizeof(layer1_pixel))
#define LCD_LAYER1_WIDTH LCD_WIDTH
#define LCD_LAYER1_HEIGHT LCD_HEIGHT
#define LCD_LAYER1_PIXELS (LCD_LAYER1_WIDTH * LCD_LAYER1_HEIGHT)
#define LCD_LAYER1_BYTES (LCD_LAYER1_PIXELS * LCD_LAYER1_PIXEL_SIZE)
/* Layer 2 (top layer) is ARGB4444, a 128x128 square. */
typedef uint16_t layer2_pixel;
#define LCD_LAYER2_PIXFORMAT LTDC_LxPFCR_ARGB4444
layer2_pixel *const lcd_layer2_frame_buffer =
(void *)SDRAM_BASE_ADDRESS + LCD_LAYER1_BYTES;
#define LCD_LAYER2_PIXEL_SIZE (sizeof(layer2_pixel))
#define LCD_LAYER2_WIDTH 128
#define LCD_LAYER2_HEIGHT 128
#define LCD_LAYER2_PIXELS (LCD_LAYER2_WIDTH * LCD_LAYER2_HEIGH)
#define LCD_LAYER2_BYTES (LCD_LAYER2_PIXELS * LCD_LAYER2_PIXEL_SIZE)
/*
* Pin assignments
* R2 = PC10, AF14
* R3 = PB0, AF09
* R4 = PA11, AF14
* R5 = PA12, AF14
* R6 = PB1, AF09
* R7 = PG6, AF14
*
* G2 = PA6, AF14
* G3 = PG10, AF09
* G4 = PB10, AF14
* G5 = PB11, AF14
* G6 = PC7, AF14
* G7 = PD3, AF14
*
* B2 = PD6, AF14
* B3 = PG11, AF11
* B4 = PG12, AF09
* B5 = PA3, AF14
* B6 = PB8, AF14
* B7 = PB9, AF14
*
* More pins...
* ENABLE = PF10, AF14
* DOTCLK = PG7, AF14
* HSYNC = PC6, AF14
* VSYNC = PA4, AF14
* CSX = PC2 used in lcd-spi
* RDX = PD12 not used: read SPI
* TE = PD11 not used: tearing effect interrupt
* WRX_DCX = PD13 used in lcd-spi
* DCX_SCL = PF7 used in lcd-spi
* SDA = PF9 used in lcd-spi
* NRST = NRST
*/
static void lcd_dma_init(void)
{
/* init GPIO clocks */
rcc_periph_clock_enable(RCC_GPIOA | RCC_GPIOB | RCC_GPIOC |
RCC_GPIOD | RCC_GPIOF | RCC_GPIOG);
/* set GPIO pin modes */
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO3 | GPIO4 | GPIO6 | GPIO11 | GPIO12);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO3 | GPIO4 | GPIO6 | GPIO11 | GPIO12);
gpio_set_af(GPIOA, GPIO_AF14, GPIO3 | GPIO4 | GPIO6 | GPIO11 | GPIO12);
gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO0 | GPIO1 | GPIO8 | GPIO9 | GPIO10 | GPIO11);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO0 | GPIO1 | GPIO8 |
GPIO9 | GPIO10 | GPIO11);
gpio_set_af(GPIOB, GPIO_AF9, GPIO0 | GPIO1);
gpio_set_af(GPIOB, GPIO_AF14, GPIO8 | GPIO9 | GPIO10 | GPIO11);
gpio_mode_setup(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO6 | GPIO7 | GPIO10);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO6 | GPIO7 | GPIO10);
gpio_set_af(GPIOC, GPIO_AF14, GPIO6 | GPIO7 | GPIO10);
gpio_mode_setup(GPIOD, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO3 | GPIO6);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO3 | GPIO6);
gpio_set_af(GPIOD, GPIO_AF14, GPIO3 | GPIO6);
gpio_mode_setup(GPIOF, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO10);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO10);
gpio_set_af(GPIOF, GPIO_AF14, GPIO10);
gpio_mode_setup(GPIOG, GPIO_MODE_AF, GPIO_PUPD_NONE,
GPIO6 | GPIO7 | GPIO10 | GPIO11 | GPIO12);
gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,
GPIO6 | GPIO7 | GPIO10 | GPIO11 | GPIO12);
gpio_set_af(GPIOG, GPIO_AF9, GPIO10 | GPIO12);
gpio_set_af(GPIOG, GPIO_AF14, GPIO6 | GPIO7 | GPIO11);
/*
* The datasheet says (Figure 16, page 151):
* The LCD-TFT clock comes from PLLSAI.
* PLLSRC selects either HSI or HSE.
* PLLSAI's input clock is either HSI or HSE divided by PLLM.
* PLLSAI's PLLLCDCLK output is the input * PLLSAIN / PLLSAIR.
* LCD-TFT clock is PLLLCDCLK divided by PLLSAIDIVR.
*
* PLLSRC and PLLM are in the RCC_PLLCFGR register.
* PLLSAIN and PLLSAIR are in RCC_PLLSAICFGR.
* PLLSAIDIVR is in RCC_DCKCFGR;
*
* In our case,
* PLLSRC already selected HSE, which is 8 MHz.
* PLLM is already set to 8. 8 MHz / 8 = 1 MHz.
* We set PLLSAIN = 192 and PLLSAIR = 4. 1 MHz * 192 / 4 = 48 MHz.
* We set PLLSAIDIVR to 8. 48 MHz / 8 = 6 MHz.
* So the LCD-TFT pixel clock is 6 MHz.
*
* The number of clocks per frame is
* (VSYNC + VBP + LCD_HEIGHT + VFP) * (HSYNC + HBP + LCD_WIDTH + HFP) =
* (2 + 2 + 320 + 4) * (10 + 20 + 240 + 10) = 91840.
*
* So the refresh frequency is 6 MHz / 91840 ~= 65.6 Hz.
*/
uint32_t sain = 192;
uint32_t saiq = (RCC_PLLSAICFGR >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT) &
RCC_PLLSAICFGR_PLLSAIQ_MASK;
uint32_t sair = 4;
RCC_PLLSAICFGR = (sain << RCC_PLLSAICFGR_PLLSAIN_SHIFT |
saiq << RCC_PLLSAICFGR_PLLSAIQ_SHIFT |
sair << RCC_PLLSAICFGR_PLLSAIR_SHIFT);
RCC_DCKCFGR |= RCC_DCKCFGR_PLLSAIDIVR_DIVR_8;
RCC_CR |= RCC_CR_PLLSAION;
while ((RCC_CR & RCC_CR_PLLSAIRDY) == 0) {
continue;
}
RCC_APB2ENR |= RCC_APB2ENR_LTDCEN;
/*
* Configure the Synchronous timings: VSYNC, HSNC,
* Vertical and Horizontal back porch, active data area, and
* the front porch timings.
*/
LTDC_SSCR = (HSYNC - 1) << LTDC_SSCR_HSW_SHIFT |
(VSYNC - 1) << LTDC_SSCR_VSH_SHIFT;
LTDC_BPCR = (HSYNC + HBP - 1) << LTDC_BPCR_AHBP_SHIFT |
(VSYNC + VBP - 1) << LTDC_BPCR_AVBP_SHIFT;
LTDC_AWCR = (HSYNC + HBP + LCD_WIDTH - 1) << LTDC_AWCR_AAW_SHIFT |
(VSYNC + VBP + LCD_HEIGHT - 1) << LTDC_AWCR_AAH_SHIFT;
LTDC_TWCR =
(HSYNC + HBP + LCD_WIDTH + HFP - 1) << LTDC_TWCR_TOTALW_SHIFT |
(VSYNC + VBP + LCD_HEIGHT + VFP - 1) << LTDC_TWCR_TOTALH_SHIFT;
/* Configure the synchronous signals and clock polarity. */
LTDC_GCR |= LTDC_GCR_PCPOL_ACTIVE_HIGH;
/* If needed, configure the background color. */
LTDC_BCCR = 0x00000000;
/* Configure the needed interrupts. */
LTDC_IER = LTDC_IER_RRIE;
nvic_enable_irq(NVIC_LCD_TFT_IRQ);
/* Configure the Layer 1 parameters.
* (Layer 1 is the bottom layer.) */
{
/* The Layer window horizontal and vertical position */
uint32_t h_start = HSYNC + HBP + 0;
uint32_t h_stop = HSYNC + HBP + LCD_LAYER1_WIDTH - 1;
LTDC_L1WHPCR = h_stop << LTDC_LxWHPCR_WHSPPOS_SHIFT |
h_start << LTDC_LxWHPCR_WHSTPOS_SHIFT;
uint32_t v_start = VSYNC + VBP + 0;
uint32_t v_stop = VSYNC + VBP + LCD_LAYER1_HEIGHT - 1;
LTDC_L1WVPCR = v_stop << LTDC_LxWVPCR_WVSPPOS_SHIFT |
v_start << LTDC_LxWVPCR_WVSTPOS_SHIFT;
/* The pixel input format */
LTDC_L1PFCR = LCD_LAYER1_PIXFORMAT;
/* The color frame buffer start address */
LTDC_L1CFBAR = (uint32_t)lcd_layer1_frame_buffer;
/* The line length and pitch of the color frame buffer */
uint32_t pitch = LCD_LAYER1_WIDTH * LCD_LAYER1_PIXEL_SIZE;
uint32_t length = LCD_LAYER1_WIDTH * LCD_LAYER1_PIXEL_SIZE + 3;
LTDC_L1CFBLR = pitch << LTDC_LxCFBLR_CFBP_SHIFT |
length << LTDC_LxCFBLR_CFBLL_SHIFT;
/* The number of lines of the color frame buffer */
LTDC_L1CFBLNR = LCD_LAYER1_HEIGHT;
/* If needed, load the CLUT */
/* (not using CLUT) */
/* If needed, configure the default color and blending
* factors
*/
LTDC_L1CACR = 0x000000FF;
LTDC_L1BFCR = LTDC_LxBFCR_BF1_PIXEL_ALPHA_x_CONST_ALPHA |
LTDC_LxBFCR_BF2_PIXEL_ALPHA_x_CONST_ALPHA;
}
/* Configure the Layer 2 parameters. */
{
/* The Layer window horizontal and vertical position */
uint32_t h_start = HSYNC + HBP + 0;
uint32_t h_stop = HSYNC + HBP + LCD_LAYER2_WIDTH - 1;
LTDC_L2WHPCR = h_stop << LTDC_LxWHPCR_WHSPPOS_SHIFT |
h_start << LTDC_LxWHPCR_WHSTPOS_SHIFT;
uint32_t v_start = VSYNC + VBP + 0;
uint32_t v_stop = VSYNC + VBP + LCD_LAYER2_HEIGHT - 1;
LTDC_L2WVPCR = v_stop << LTDC_LxWVPCR_WVSPPOS_SHIFT |
v_start << LTDC_LxWVPCR_WVSTPOS_SHIFT;
/* The pixel input format */
LTDC_L2PFCR = LCD_LAYER2_PIXFORMAT;
/* The color frame buffer start address */
LTDC_L2CFBAR = (uint32_t)lcd_layer2_frame_buffer;
/* The line length and pitch of the color frame buffer */
uint32_t pitch = LCD_LAYER2_WIDTH * LCD_LAYER2_PIXEL_SIZE;
uint32_t length = LCD_LAYER2_WIDTH * LCD_LAYER2_PIXEL_SIZE + 3;
LTDC_L2CFBLR = pitch << LTDC_LxCFBLR_CFBP_SHIFT |
length << LTDC_LxCFBLR_CFBLL_SHIFT;
/* The number of lines of the color frame buffer */
LTDC_L2CFBLNR = LCD_LAYER2_HEIGHT;
/* If needed, load the CLUT */
/* (not using CLUT) */
/* If needed, configure the default color and blending
* factors
*/
LTDC_L2CACR = 0x000000FF;
LTDC_L2BFCR = LTDC_LxBFCR_BF1_PIXEL_ALPHA_x_CONST_ALPHA |
LTDC_LxBFCR_BF2_PIXEL_ALPHA_x_CONST_ALPHA;
}
/* Enable Layer1 and if needed the CLUT */
LTDC_L1CR |= LTDC_LxCR_LAYER_ENABLE;
/* Enable Layer2 and if needed the CLUT */
LTDC_L2CR |= LTDC_LxCR_LAYER_ENABLE;
/* If needed, enable dithering and/or color keying. */
/* (Not needed) */
/* Reload the shadow registers to active registers. */
LTDC_SRCR |= LTDC_SRCR_VBR;
/* Enable the LCD-TFT controller. */
LTDC_GCR |= LTDC_GCR_LTDC_ENABLE;
}
static void mutate_background_color(void)
{
static uint32_t ints;
ints += 3;
uint32_t shift = ints >> 9;
if (shift >= 3) {
ints = shift = 0;
}
uint32_t component = ints & 0xFF;
if (ints & 0x100) {
component = 0xff - component;
}
LTDC_BCCR = component << 8 * shift;
}
/*
* The sprite bounce algorithm works surprisingly well for a first
* guess. Whenever the sprite touches a wall, we reverse its velocity
* normal to the wall, and pick a random velocity from -3 to +3
* parallel to the wall. (e.g., if it touches a side, reverse the X
* velocity and pick a random Y velocity.) That gives enough
* unpredictability to make it interesting.
*
* The random numbers come from rand(), and we do not call srand().
* That means the sprite makes exactly the same moves every time the
* demo is run. (Repeatability is a feature.)
*/
static void move_sprite(void)
{
static int8_t dx = 1, dy = 1;
static int16_t x, y;
static int16_t age;
x += dx;
y += dy;
if (x < 0) {
dy = rand() % 7 - 3;
dx = -dx;
x = 0;
age = 0;
} else if (x >= LCD_WIDTH - LCD_LAYER2_WIDTH) {
dy = rand() % 7 - 3;
dx = -dx;
x = LCD_WIDTH - LCD_LAYER2_WIDTH - 1;
age = 0;
}
if (y < 0) {
dx = rand() % 7 - 3;
dy = -dy;
y = 0;
age = 0;
} else if (y >= LCD_HEIGHT - LCD_LAYER2_HEIGHT) {
dx = rand() % 7 - 3;
dy = -dy;
y = LCD_HEIGHT - LCD_LAYER2_HEIGHT - 1;
age = 0;
}
if (dy == 0 && dx == 0) {
dy = y ? -1 : +1;
}
uint32_t h_start = HSYNC + HBP + x;
uint32_t h_stop = h_start + LCD_LAYER2_WIDTH - 1;
LTDC_L2WHPCR = h_stop << LTDC_LxWHPCR_WHSPPOS_SHIFT |
h_start << LTDC_LxWHPCR_WHSTPOS_SHIFT;
uint32_t v_start = VSYNC + VBP + y;
uint32_t v_stop = v_start + LCD_LAYER2_HEIGHT - 1;
LTDC_L2WVPCR = v_stop << LTDC_LxWVPCR_WVSPPOS_SHIFT |
v_start << LTDC_LxWVPCR_WVSTPOS_SHIFT;
/* The sprite fades away as it ages. */
age += 2;
if (age > 0xFF) {
age = 0xFF;
}
LTDC_L2CACR = 0x000000FF - age;
}
/*
* Here is where all the work is done. We poke a total of 6 registers
* for each frame.
*/
void lcd_tft_isr(void)
{
LTDC_ICR |= LTDC_ICR_CRRIF;
mutate_background_color();
move_sprite();
LTDC_SRCR |= LTDC_SRCR_VBR;
}
/*
* Checkerboard pattern. Odd squares are transparent; even squares are
* all different colors.
*/
static void draw_layer_1(void)
{
int row, col;
int cel_count = (LCD_LAYER1_WIDTH >> 5) + (LCD_LAYER1_HEIGHT >> 5);
for (row = 0; row < LCD_LAYER1_HEIGHT; row++) {
for (col = 0; col < LCD_LAYER1_WIDTH; col++) {
size_t i = row * LCD_LAYER1_WIDTH + col;
uint32_t cel = (row >> 5) + (col >> 5);
uint8_t a = cel & 1 ? 0 : 0xFF;
uint8_t r = row * 0xFF / LCD_LAYER1_HEIGHT;
uint8_t g = col * 0xFF / LCD_LAYER1_WIDTH;
uint8_t b = 0xFF * (cel_count - cel - 1) / cel_count;
if (!(cel & 3)) {
b = 0;
}
/* Put black and white borders around the squares. */
if (row % 32 == 0 || col % 32 == 0) {
r = g = b = a ? 0xFF : 0;
a = 0xFF;
}
layer1_pixel pix = a << 24 | r << 16 | g << 8 | b << 0;
/*
* Outline the screen in white. Put a black
* dot at the origin.
*
* (The origin is in the lower left!)
*/
if (row == 0 || col == 0 || row == 319 || col == 239) {
pix = 0xFFFFFFFF;
} else if (row < 20 && col < 20) {
pix = 0xFF000000;
}
lcd_layer1_frame_buffer[i] = pix;
}
}
}
/*
* Layer 2 holds the sprite. The sprite is a semitransparent
* magenta/cyan diamond outlined in black.
*/
static void draw_layer_2(void)
{
int row, col;
const uint8_t hw = LCD_LAYER2_WIDTH / 2;
const uint8_t hh = LCD_LAYER2_HEIGHT / 2;
const uint8_t sz = (hw + hh) / 2;
for (row = 0; row < LCD_LAYER2_HEIGHT; row++) {
for (col = 0; col < LCD_LAYER2_WIDTH; col++) {
size_t i = row * LCD_LAYER2_WIDTH + col;
uint8_t dx = abs(col - hw);
uint8_t dy = abs(row - hh);
uint8_t dxy = dx + dy;
uint8_t a = dxy <= sz ? 0xF * dxy / (sz / 2) : 0x0;
if (a > 0xF) {
if (a < 0x14) {
a = 0xF;
} else {
a &= 0xF;
}
}
uint8_t r = dx >= dy ? 0xF : 0x0;
uint8_t g = dy >= dx ? 0xF : 0x0;
uint8_t b = 0xF;
if (dx + dy >= sz - 2 || dx == dy) {
r = g = b = 0;
}
layer2_pixel pix = a << 12 | r << 8 | g << 4 | b << 0;
lcd_layer2_frame_buffer[i] = pix;
}
}
}
int main(void)
{
/* init timers. */
clock_setup();
/* set up USART 1. */
console_setup(115200);
console_stdio_setup();
/* set up SDRAM. */
sdram_init();
printf("Preloading frame buffers\n");
draw_layer_1();
draw_layer_2();
printf("Initializing LCD\n");
lcd_dma_init();
lcd_spi_init();
printf("Initialized.\n");
while (1) {
continue;
}
}

View File

@@ -0,0 +1,383 @@
#include "lcd-spi.h"
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Initialize the ST Micro TFT Display for DMA video using the SPI port
*/
#include <stddef.h>
#include <stdio.h>
#include <libopencm3/stm32/spi.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/cm3/nvic.h>
#include "clock.h"
#define LCD_SPI SPI5
/*
* This is an ungainly workaround (aka hack) basically I want to know
* when the SPI port is 'done' sending all of the bits out, and it is
* done when it has clocked enough bits that it would have received a
* byte. Since we're using the SPI port in write_only mode I am not
* collecting the "received" bytes into a buffer, but one could of
* course. I keep track of how many bytes should have been returned
* by decrementing the 'rx_pend' volatile. When it reaches 0 we know
* we are done.
*/
static volatile int rx_pend;
static volatile uint16_t spi_rx_buf;
/*
* This is the ISR we use. Note that the name is based on the name
* in the irq.json file of libopencm3 plus the "_isr" extension.
*/
void
spi5_isr(void)
{
spi_rx_buf = SPI_DR(SPI5);
--rx_pend;
}
/*
* For the STM32-DISCO board, SPI pins in use:
* N/C - RESET
* PC2 - CS (could be NSS but won't be)
* PF7 - SCLK (AF5) SPI5
* PD13 - DATA / CMD*
* PF9 - MOSI (AF5) SPI5
*/
/*
* void lcd_command(cmd, delay, args, arg_ptr)
*
* All singing all dancing 'do a command' feature. Basically it
* sends a command, and if args are present it sets 'data' and
* sends those along too.
*/
static void
lcd_command(uint8_t cmd, int delay, int n_args, const uint8_t *args)
{
uint32_t timeout;
int i;
gpio_clear(GPIOC, GPIO2); /* Select the LCD */
rx_pend++;
spi_send(SPI5, cmd);
/* We need to wait until it is sent, if we turn on the Data
* line too soon, it ends up confusing the display to thinking
* its a data transfer, as it samples the D/CX line on the last
* bit sent.
*/
for (timeout = 0; (timeout < 1000) && (rx_pend); timeout++) {
continue;
}
rx_pend = 0; /* sometimes, at 10Mhz we miss this */
if (n_args) {
gpio_set(GPIOD, GPIO13); /* Set the D/CX pin */
for (i = 0; i < n_args; i++) {
rx_pend++;
spi_send(SPI5, *(args+i));
}
/* This wait so that we don't pull CS too soon after
* sending the last byte of data.
*/
for (timeout = 0; (timeout < 1000) && (rx_pend); timeout++) {
continue;
}
}
gpio_set(GPIOC, GPIO2); /* Turn off chip select */
gpio_clear(GPIOD, GPIO13); /* always reset D/CX */
if (delay) {
milli_sleep(delay); /* wait, if called for */
}
}
/* Notes on the less obvious ILI9341 commands: */
/*
* ILI9341 datasheet, pp 46-49:
*
* RCM[1:0} = 0b10 command 0xb0
* DPI[2:0] = 0b110 command 0x3a
* RIM = 0 command 0xf6
* PCDIV = ???? command 0xB6
*
* Pp 239-240:
* external fosc = DOTCLK / (2 * (PCDIV + 1))
*
* ("Cube" is how the STM32F4Cube demo software sets the register.
* "Chuck" is ChuckM's lcd-serial demo, first revision.)
*
* Command 0x3A: COLMOD: Pixel Format Set LCD_PIXEL_FORMAT
* Reset Cube Chuck
* DPI[2:0] 110 (18 bit/pix) 110 101 (16 bit/pix)
* DBI[2:0] 110 (18 bit/pix) 110 101 (16 bit/pix)
*
* Command 0xB0: RGB Interface Signal LCD_RGB_INTERFACE
* Reset Cube
* Bypass: 0 (direct) 1 (memory)
* RCM[1:0] 10 10
* VSPL 0 (low) 0
* HSPL 0 (low) 0
* DPL 0 (rising) 1 (falling)
* EPL 1 (low) 0 (high)
*
* Command 0xB6: Display Function Control LCD_DFC
* Reset Cube 0A A7 27 04
* PTG[1:0] 10 10
* PT[1:0] 10 10
* REV 1 1
* GS 0 0
* SS 0 (S1->S720) 1 (S720->S1)
* SM 0 0
* ISC[3:0] 0010 (5 frames) 0111 (15 frames)
* NL[5:0] 100111 100111
* PCDIV[5:0] ? 000100
* S720->S1 moves the origin from the lower left corner to lower right
* (viewing the board so the silkscreen is upright)
*
* Command 0xF6: Interface Control LCD_INTERFACE
* Reset Cube 01 00 06
* MY_EOR 0 0
* MX_EOR 0 0
* MV_EOR 0 0
* BGR_EOR 0 0
* WEMODE 1 (wrap) 1
* EPF[1:0] 00 00
* MDT[1:0] 00 00
* ENDIAN 0 (MSB first) 0
* DM[1:0] 00 (int clk) 01 (RGB ifc)
* RM 0 (sys ifc) 1 (RGB ifc)
* RIM 0 (1 xfr/pix) 0
*/
/* ILI9341 command definitions */
/* Regulative[sic] Command Set */
#define ILI_NOP 0x00
#define ILI_RESET 0x01
#define ILI_RD_DID 0x04
#define ILI_RD_STS 0x09
#define ILI_RD_PWR_MODE 0x0a
#define ILI_RD_MADCTL 0x0b
#define ILI_RD_PXL_FMT 0x0c
#define ILI_PD_IMG_FMT 0x0d
#define ILI_RD_SIG_MODE 0x0e
#define ILI_RD_DIAG_RSLT 0x0f
#define ILI_ENTER_SLEEP 0x10
#define ILI_SLEEP_OUT 0x11
#define ILI_PARTIAL_ON 0x12
#define ILI_NORMAL_MODE_ON 0x13
#define ILI_INVERSE_ON 0x20
#define ILI_INVERSE_OFF 0x21
#define ILI_GAMMA_SET 0x26
#define ILI_DISP_OFF 0x28
#define ILI_DISP_ON 0x29
#define ILI_CAS 0x2a
#define ILI_PAS 0x2b
#define ILI_MEM_WRITE 0x2c
#define ILI_COLOR_SET 0x2d
#define ILI_MEM_READ 0x2e
#define ILI_PARTIAL_AREA 0x30
#define ILI_VERT_SCROLL_DEF 0x33
#define ILI_TEAR_EFF_OFF 0x34
#define ILI_TEAR_EFF_ON 0x35
#define ILI_MEM_ACC_CTL 0x36
#define ILI_V_SCROLL_START 0x37
#define ILI_IDLE_OFF 0x38
#define ILI_IDLE_ON 0x39
#define ILI_PIX_FMT_SET 0x3a
#define ILI_WR_MEM_CONT 0x3c
#define ILI_RD_MEM_CONT 0x3e
#define ILI_SET_TEAR_LINE 0x44
#define ILI_GET_SCANLINE 0x45
#define ILI_WR_BRIGHTNESS 0x51
#define ILI_RD_BRIGHTNESS 0x52
#define ILI_WR_CTRL 0x53
#define ILI_RD_CTRL 0x54
#define ILI_WR_CABC 0x55
#define ILI_RD_CABC 0x56
#define ILI_WR_CABC_MIN 0x5e
#define ILI_RD_CABC_MAX 0x5f
#define ILI_RD_ID1 0xda
#define ILI_RD_ID2 0xdb
#define ILI_RD_ID3 0xdc
/* Extended Command Set */
#define ILI_RGB_IFC_CTL 0xb0
#define ILI_FRM_CTL_NORM 0xb1
#define ILI_FRM_CTL_IDLE 0xb2
#define ILI_FRM_CTL_PART 0xb3
#define ILI_INVERSE_CTL 0xb4
#define ILI_PORCH_CTL 0xb5
#define ILI_FUNC_CTL 0xb6
#define ILI_ENTRY_MODE_SET 0xb7
#define ILI_BL_CTL_1 0xb8
#define ILI_BL_CTL_2 0xb9
#define ILI_BL_CTL_3 0xba
#define ILI_BL_CTL_4 0xbb
#define ILI_BL_CTL_5 0xbc
#define ILI_BL_CTL_7 0xbe
#define ILI_BL_CTL_8 0xbf
#define ILI_PWR_CTL_1 0xc0
#define ILI_PWR_CTL_2 0xc1
#define ILI_VCOM_CTL_1 0xc5
#define ILI_VCOM_CTL_2 0xc7
#define ILI_NV_MEM_WR 0xd0
#define ILI_NV_MEM_PROT_KEY 0xd1
#define ILI_NV_MEM_STATUS_RD 0xd2
#define ILI_RD_ID4 0xd3
#define ILI_POS_GAMMA 0xe0
#define ILI_NEG_GAMMA 0xe1
#define ILI_GAMMA_CTL_1 0xe2
#define ILI_GAMMA_CTL_2 0xe3
#define ILI_IFC_CTL 0xf6
/*
* This structure defines the sequence of commands to send
* to the Display in order to initialize it. The AdaFruit
* folks do something similar, it helps when debugging the
* initialization sequence for the display.
*/
#define MAX_INLINE_ARGS (sizeof(uint8_t *))
struct tft_command {
uint16_t delay; /* If you need a delay after */
uint8_t cmd; /* command to send */
uint8_t n_args; /* How many arguments it has */
union {
uint8_t args[MAX_INLINE_ARGS]; /* The first four arguments */
const uint8_t *aptr; /* More than four arguemnts */
};
};
static const uint8_t pos_gamma_args[] = { 0x0F, 0x29, 0x24, 0x0C, 0x0E,
0x09, 0x4E, 0x78, 0x3C, 0x09,
0x13, 0x05, 0x17, 0x11, 0x00 };
static const uint8_t neg_gamma_args[] = { 0x00, 0x16, 0x1B, 0x04, 0x11,
0x07, 0x31, 0x33, 0x42, 0x05,
0x0C, 0x0A, 0x28, 0x2F, 0x0F };
/*
* These are the commands we're going to send to the
* display to initialize it. We send them all, in sequence
* with occasional delays. Commands that require data bytes
* as arguments, indicate how many bytes to pull out the
* above array to include.
*
* The sequence was pieced together from the ST Micro demo
* code, the data sheet, and other sources on the web.
*/
#define EXPERIMENT 1
const struct tft_command initialization[] = {
{ 0, ILI_PWR_CTL_1, 1, .args = { 0x10 } },
{ 0, ILI_PWR_CTL_2, 1, .args = { 0x10 } },
{ 0, ILI_VCOM_CTL_1, 2, .args = { 0x45, 0x15 } },
{ 0, ILI_VCOM_CTL_2, 1, .args = { 0x90 } },
{ 0, ILI_MEM_ACC_CTL, 1, .args = { 0x08 } },
{ 0, ILI_RGB_IFC_CTL, 1, .args = { 0xc0 } },
{ 0, ILI_IFC_CTL, 3, .args = { 0x01, 0x00, 0x06 } },
{ 0, ILI_GAMMA_SET, 1, .args = { 0x01 } },
{ 0, ILI_POS_GAMMA, 15, .aptr = pos_gamma_args },
{ 0, ILI_NEG_GAMMA, 15, .aptr = neg_gamma_args },
{ +5, ILI_SLEEP_OUT, 0, .args = {} },
{ 0, ILI_DISP_ON, 0, .args = {} },
};
static void
initialize_display(const struct tft_command cmds[], size_t cmd_count)
{
size_t i;
for (i = 0; i < cmd_count; i++) {
uint8_t arg_count = cmds[i].n_args;
const uint8_t *args = cmds[i].args;
if (arg_count > MAX_INLINE_ARGS) {
args = cmds[i].aptr;
}
lcd_command(cmds[i].cmd, cmds[i].delay, arg_count, args);
}
}
/*
* void lcd_spi_init(void)
*
* Initialize the SPI port, and the through that port
* initialize the LCD controller. Note that this code
* will expect to be able to draw into the SDRAM on
> * the board, so the sdram much be initialized before
* calling this function.
*
* SPI Port and GPIO Defined - for STM32F4-Disco
*
* LCD_CS PC2
* LCD_SCK PF7
* LCD_DC PD13
* LCD_MOSI PF9
* LCD_SPI SPI5
* LCD_WIDTH 240
* LCD_HEIGHT 320
*/
void
lcd_spi_init(void)
{
uint32_t tmp;
/*
* Set up the GPIO lines for the SPI port and
* control lines on the display.
*/
rcc_periph_clock_enable(RCC_GPIOC | RCC_GPIOD | RCC_GPIOF);
gpio_mode_setup(GPIOC, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO2);
gpio_mode_setup(GPIOD, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO13);
gpio_mode_setup(GPIOF, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO7 | GPIO9);
gpio_set_af(GPIOF, GPIO_AF5, GPIO7 | GPIO9);
rx_pend = 0;
/* Implement state management hack */
nvic_enable_irq(NVIC_SPI5_IRQ);
rcc_periph_clock_enable(RCC_SPI5);
/* This should configure SPI5 as we need it configured */
tmp = SPI_SR(LCD_SPI);
SPI_CR2(LCD_SPI) |= (SPI_CR2_SSOE | SPI_CR2_RXNEIE);
/* device clocks on the rising edge of SCK with MSB first */
tmp = SPI_CR1_BAUDRATE_FPCLK_DIV_4 | /* 10.25Mhz SPI Clock (42M/4) */
SPI_CR1_MSTR | /* Master Mode */
SPI_CR1_BIDIOE | /* Write Only */
SPI_CR1_SPE; /* Enable SPI */
SPI_CR1(LCD_SPI) = tmp; /* Do it. */
if (SPI_SR(LCD_SPI) & SPI_SR_MODF) {
SPI_CR1(LCD_SPI) = tmp; /* Re-writing will reset MODF */
fprintf(stderr, "Initial mode fault.\n");
}
/* Set up the display */
initialize_display(initialization,
sizeof(initialization) / sizeof(initialization[0]));
}

View File

@@ -0,0 +1,31 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LCD_SPI_H
#define LCD_SPI_H
/*
* prototypes for the LCD example
*
* This is a very basic API, initialize.
*/
extern void lcd_spi_init(void);
#endif /* !LCD_SPI_H */

View File

@@ -0,0 +1,139 @@
#include "sdram.h"
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This then is the initialization code extracted from the
* sdram example.
*/
#include <stdint.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/fsmc.h>
#include "clock.h"
/*
* This is just syntactic sugar but it helps, all of these
* GPIO pins get configured in exactly the same way.
*/
static struct {
uint32_t gpio;
uint16_t pins;
} sdram_pins[6] = {
{GPIOB, GPIO5 | GPIO6 },
{GPIOC, GPIO0 },
{GPIOD, GPIO0 | GPIO1 | GPIO8 | GPIO9 | GPIO10 | GPIO14 | GPIO15},
{GPIOE, GPIO0 | GPIO1 | GPIO7 | GPIO8 | GPIO9 | GPIO10 |
GPIO11 | GPIO12 | GPIO13 | GPIO14 | GPIO15 },
{GPIOF, GPIO0 | GPIO1 | GPIO2 | GPIO3 | GPIO4 | GPIO5 | GPIO11 |
GPIO12 | GPIO13 | GPIO14 | GPIO15 },
{GPIOG, GPIO0 | GPIO1 | GPIO4 | GPIO5 | GPIO8 | GPIO15}
};
static struct sdram_timing timing = {
.trcd = 2, /* RCD Delay */
.trp = 2, /* RP Delay */
.twr = 2, /* Write Recovery Time */
.trc = 7, /* Row Cycle Delay */
.tras = 4, /* Self Refresh Time */
.txsr = 7, /* Exit Self Refresh Time */
.tmrd = 2, /* Load to Active Delay */
};
/*
* Initialize the SD RAM controller.
*/
void
sdram_init(void) {
int i;
uint32_t cr_tmp, tr_tmp; /* control, timing registers */
/*
* First all the GPIO pins that end up as SDRAM pins
*/
rcc_periph_clock_enable(RCC_GPIOB);
rcc_periph_clock_enable(RCC_GPIOC);
rcc_periph_clock_enable(RCC_GPIOD);
rcc_periph_clock_enable(RCC_GPIOE);
rcc_periph_clock_enable(RCC_GPIOF);
rcc_periph_clock_enable(RCC_GPIOG);
for (i = 0; i < 6; i++) {
gpio_mode_setup(sdram_pins[i].gpio,
GPIO_MODE_AF, GPIO_PUPD_NONE,
sdram_pins[i].pins);
gpio_set_output_options(sdram_pins[i].gpio, GPIO_OTYPE_PP,
GPIO_OSPEED_50MHZ, sdram_pins[i].pins);
gpio_set_af(sdram_pins[i].gpio, GPIO_AF12, sdram_pins[i].pins);
}
/* Enable the SDRAM Controller */
#if 1
rcc_periph_clock_enable(RCC_FSMC);
#else
rcc_peripheral_enable_clock(&RCC_AHB3ENR, RCC_AHB3ENR_FMCEN);
#endif
/* Note the STM32F429-DISCO board has the ram attached to bank 2 */
/* Timing parameters computed for a 168Mhz clock */
/* These parameters are specific to the SDRAM chip on the board */
cr_tmp = FMC_SDCR_RPIPE_1CLK;
cr_tmp |= FMC_SDCR_SDCLK_2HCLK;
cr_tmp |= FMC_SDCR_CAS_3CYC;
cr_tmp |= FMC_SDCR_NB4;
cr_tmp |= FMC_SDCR_MWID_16b;
cr_tmp |= FMC_SDCR_NR_12;
cr_tmp |= FMC_SDCR_NC_8;
/* We're programming BANK 2, but per the manual some of the parameters
* only work in CR1 and TR1 so we pull those off and put them in the
* right place.
*/
FMC_SDCR1 |= (cr_tmp & FMC_SDCR_DNC_MASK);
FMC_SDCR2 = cr_tmp;
tr_tmp = sdram_timing(&timing);
FMC_SDTR1 |= (tr_tmp & FMC_SDTR_DNC_MASK);
FMC_SDTR2 = tr_tmp;
/* Now start up the Controller per the manual
* - Clock config enable
* - PALL state
* - set auto refresh
* - Load the Mode Register
*/
sdram_command(SDRAM_BANK2, SDRAM_CLK_CONF, 1, 0);
milli_sleep(1); /* sleep at least 100uS */
sdram_command(SDRAM_BANK2, SDRAM_PALL, 1, 0);
sdram_command(SDRAM_BANK2, SDRAM_AUTO_REFRESH, 4, 0);
tr_tmp = SDRAM_MODE_BURST_LENGTH_2 |
SDRAM_MODE_BURST_TYPE_SEQUENTIAL |
SDRAM_MODE_CAS_LATENCY_3 |
SDRAM_MODE_OPERATING_MODE_STANDARD |
SDRAM_MODE_WRITEBURST_MODE_SINGLE;
sdram_command(SDRAM_BANK2, SDRAM_LOAD_MODE, 1, tr_tmp);
/*
* set the refresh counter to insure we kick off an
* auto refresh often enough to prevent data loss.
*/
FMC_SDRTR = 683;
/* and Poof! a 8 megabytes of ram shows up in the address space */
}

View File

@@ -0,0 +1,32 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __SDRAM_H
#define __SDRAM_H
#define SDRAM_BASE_ADDRESS ((uint8_t *)(0xd0000000))
/* Initialize the SDRAM chip on the board */
void sdram_init(void);
#ifndef NULL
#define NULL (void *)(0)
#endif
#endif